
aiokafka Documentation
Release 0.8.0

Jun 01, 2023

CONTENTS

1 Getting started 3
1.1 AIOKafkaConsumer . 3
1.2 AIOKafkaProducer . 3

2 Installation 5
2.1 Optional LZ4 install . 5
2.2 Optional Snappy install . 5
2.3 Optional zstd indtall . 6
2.4 Optional GSSAPI install . 6

3 Source code 7

4 Authors and License 9
4.1 Producer client . 9

4.1.1 Message buffering . 9
4.1.2 Retries and Message acknowledgement . 10
4.1.3 Idempotent produce . 10
4.1.4 Transactional producer . 11
4.1.5 Returned RecordMetadata object . 11
4.1.6 Direct batch control . 12

4.2 Consumer client . 12
4.2.1 Offsets and Consumer Position . 13
4.2.2 Consumer Groups and Topic Subscriptions . 17
4.2.3 Detecting Consumer Failures . 21

4.3 Difference between aiokafka and kafka-python . 21
4.3.1 Why do we need another library? . 21
4.3.2 API differences and rationale . 21

4.4 API Documentation . 23
4.4.1 Producer class . 23
4.4.2 Consumer class . 27
4.4.3 Helpers . 37
4.4.4 Abstracts . 38
4.4.5 SSL Authentication . 40
4.4.6 SASL Authentication . 40
4.4.7 Error handling . 40
4.4.8 Other references . 41

4.5 Examples . 45
4.5.1 Serialization and compression . 45
4.5.2 Manual commit . 47
4.5.3 Group consumer . 47

i

4.5.4 Custom partitioner . 49
4.5.5 Using SSL with aiokafka . 50
4.5.6 Local state and storing offsets outside of Kafka . 51
4.5.7 Batch producer . 55
4.5.8 Transactional Consume-Process-Produce . 56

5 Indices and tables 59

Python Module Index 61

Index 63

ii

aiokafka Documentation, Release 0.8.0

aiokafka is a client for the Apache Kafka distributed stream processing system using asyncio. It is based on the kafka-
python library and reuses its internals for protocol parsing, errors, etc. The client is designed to function much like the
official Java client, with a sprinkling of Pythonic interfaces.

aiokafka can be used with 0.9+ Kafka brokers and supports fully coordinated consumer groups – i.e., dynamic partition
assignment to multiple consumers in the same group.

CONTENTS 1

https://kafka.apache.org
https://pypi.python.org/pypi/aiokafka
http://docs.python.org/3.7/library/asyncio.html
https://github.com/dpkp/kafka-python
https://github.com/dpkp/kafka-python

aiokafka Documentation, Release 0.8.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 AIOKafkaConsumer

AIOKafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official Java
client.

Here’s a consumer example:

from aiokafka import AIOKafkaConsumer
import asyncio

async def consume():
consumer = AIOKafkaConsumer(

'my_topic', 'my_other_topic',
bootstrap_servers='localhost:9092',
group_id="my-group")

Get cluster layout and join group `my-group`
await consumer.start()
try:

Consume messages
async for msg in consumer:

print("consumed: ", msg.topic, msg.partition, msg.offset,
msg.key, msg.value, msg.timestamp)

finally:
Will leave consumer group; perform autocommit if enabled.
await consumer.stop()

asyncio.run(consume())

Read more in Consumer client section.

1.2 AIOKafkaProducer

AIOKafkaProducer is a high-level, asynchronous message producer.

Here’s a producer example:

from aiokafka import AIOKafkaProducer
import asyncio

(continues on next page)

3

aiokafka Documentation, Release 0.8.0

(continued from previous page)

async def send_one():
producer = AIOKafkaProducer(

bootstrap_servers='localhost:9092')
Get cluster layout and initial topic/partition leadership information
await producer.start()
try:

Produce message
await producer.send_and_wait("my_topic", b"Super message")

finally:
Wait for all pending messages to be delivered or expire.
await producer.stop()

asyncio.run(send_one())

Read more in Producer client section.

4 Chapter 1. Getting started

CHAPTER

TWO

INSTALLATION

pip install aiokafka

Note: aiokafka requires the kafka-python library.

2.1 Optional LZ4 install

To enable LZ4 compression/decompression, install aiokafka with lz4 extra option:

pip install ‘aiokafka[lz4]’

Note, that on Windows you will need Visual Studio build tools, available for download from http://landinghub.
visualstudio.com/visual-cpp-build-tools

2.2 Optional Snappy install

1. Download and build Snappy from http://google.github.io/snappy/

Ubuntu:

apt-get install libsnappy-dev

OSX:

brew install snappy

From Source:

wget https://github.com/google/snappy/tarball/master
tar xzvf google-snappy-X.X.X-X-XXXXXXXX.tar.gz
cd google-snappy-X.X.X-X-XXXXXXXX
./configure
make
sudo make install

1. Install aiokafka with snappy extra option

pip install 'aiokafka[snappy]'

5

https://github.com/dpkp/kafka-python
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://google.github.io/snappy/

aiokafka Documentation, Release 0.8.0

2.3 Optional zstd indtall

To enable Zstandard compression/decompression, install aiokafka with zstd extra option:

pip install 'aiokafka[zstd]'

2.4 Optional GSSAPI install

To enable SASL authentication with GSSAPI, install aiokafka with gssapi extra option:

pip install 'aiokafka[gssapi]'

6 Chapter 2. Installation

CHAPTER

THREE

SOURCE CODE

The project is hosted on GitHub

Please feel free to file an issue on bug tracker if you have found a bug or have some suggestion for library improvement.

The library uses Travis for Continious Integration.

7

https://github.com/aio-libs/aiokafka
https://github.com/aio-libs/aiokafka/issues
https://travis-ci.com/aio-libs/aiokafka

aiokafka Documentation, Release 0.8.0

8 Chapter 3. Source code

CHAPTER

FOUR

AUTHORS AND LICENSE

The aiokafka package is Apache 2 licensed and freely available.

Feel free to improve this package and send a pull request to GitHub.

Contents:

4.1 Producer client

AIOKafkaProducer is a client that publishes records to the Kafka cluster. Most simple usage would be:

producer = aiokafka.AIOKafkaProducer(bootstrap_servers="localhost:9092")
await producer.start()
try:

await producer.send_and_wait("my_topic", b"Super message")
finally:

await producer.stop()

Under the hood, AIOKafkaProducer does quite some work on message delivery including batching, retries, etc. All
of it can be configured, so let’s go through some components for a better understanding of the configuration options.

4.1.1 Message buffering

While the user would expect the example above to send "Super message" directly to the broker, it’s actually not sent
right away, but rather added to a buffer space. A background task will then get batches of messages and send them to
appropriate nodes in the cluster. This batching scheme allows more throughput and more efficient compression. To see
it more clearly lets avoid the send_and_wait() shortcut:

Will add the message to 1st partition's batch. If this method times out,
we can say for sure that message will never be sent.

fut = await producer.send("my_topic", b"Super message", partition=1)

Message will either be delivered or an unrecoverable error will occur.
Cancelling this future will not cancel the send.
msg = await fut

Batches themselves are created per partition with a maximum size of max_batch_size. Messages in a batch are strictly
in append order and only 1 batch per partition is sent at a time (aiokafka does not support max.inflight.requests.
per.connection option present in Java client). This makes a strict guarantee on message order in a partition.

9

https://github.com/aio-libs/aiokafka

aiokafka Documentation, Release 0.8.0

By default, a new batch is sent immediately after the previous one (even if it’s not full). If you want to reduce the
number of requests you can set linger_ms to something other than 0. This will add an additional delay before sending
next batch if it’s not yet full.

aiokafka does not (yet!) support some options, supported by Java’s client:

• buffer.memory to limit how much buffer space is used by Producer to schedule requests in all partitions.

• max.block.ms to limit the amount of time send() coroutine will wait for buffer append when the memory limit
is reached. For now use:

await asyncio.wait_for(producer.send(...), timeout=timeout)

If your use case requires direct batching control, see Direct batch control.

4.1.2 Retries and Message acknowledgement

aiokafka will retry most errors automatically, but only until request_timeout_ms. If a request is expired, the last error
will be raised to the application. Retrying messages on application level after an error will potentially lead to duplicates,
so it’s up to the user to decide.

For example, if RequestTimedOutError is raised, Producer can’t be sure if the Broker wrote the request or not.

The acks option controls when the produce request is considered acknowledged.

The most durable setting is acks="all". Broker will wait for all available replicas to write the request before replying to
Producer. Broker will consult it’s min.insync.replicas setting to know the minimal amount of replicas to write. If
there’s not enough in sync replicas either NotEnoughReplicasError or NotEnoughReplicasAfterAppendError
will be raised. It’s up to the user what to do in those cases, as the errors are not retriable.

The default is ack=1 setting. It will not wait for replica writes, only for Leader to write the request.

The least safe is ack=0 when there will be no acknowledgement from Broker, meaning client will never retry, as it will
never see any errors.

4.1.3 Idempotent produce

As of Kafka 0.11 the Brokers support idempotent producing, that will prevent the Producer from creating duplicates on
retries. aiokafka supports this mode by passing the parameter enable_idempotence=True to AIOKafkaProducer:

producer = aiokafka.AIOKafkaProducer(
bootstrap_servers='localhost:9092',
enable_idempotence=True)

await producer.start()
try:

await producer.send_and_wait("my_topic", b"Super message")
finally:

await producer.stop()

This option will change a bit the logic on message delivery:

• The above mentioned ack="all" will be forced. If any other value is explicitly passed with
enable_idempotence=True a ValueError will be raised.

• I contrast to general mode, will not raise RequestTimedOutError errors and will not expire batch delivery after
request_timeout_ms passed.

New in version 0.5.0.

10 Chapter 4. Authors and License

https://docs.python.org/3/library/exceptions.html#ValueError

aiokafka Documentation, Release 0.8.0

4.1.4 Transactional producer

As of Kafka 0.11 the Brokers support transactional message producer, meaning that messages sent to one or more
topics will only be visible on consumers after the transaction is committed. To use the transactional producer and the
attendant APIs, you must set the transactional_id configuration property:

producer = aiokafka.AIOKafkaProducer(
bootstrap_servers='localhost:9092',
transactional_id="transactional_test")

await producer.start()
try:

async with producer.transaction():
res = await producer.send_and_wait(

"test-topic", b"Super transactional message")
finally:

await producer.stop()

If the transactional_id is set, idempotence is automatically enabled along with the producer configs which idempotence
depends on. Further, topics which are included in transactions should be configured for durability. In particular, the
replication.factor should be at least 3, and the min.insync.replicas for these topics should be set to 2. Finally,
in order for transactional guarantees to be realized from end-to-end, the consumers must be configured to read only
committed messages as well. See Reading Transactional Messages.

The purpose of the transactional_id is to enable transaction recovery across multiple sessions of a single producer
instance. It would typically be derived from the shard identifier in a partitioned, stateful, application. As such, it
should be unique to each producer instance running within a partitioned application. Using the same transactional_id
will cause the previous instance to raise an exception ProducerFenced that is not retriable and will force it to exit.

Besides, the transaction() shortcut producer also supports a set of API’s similar to ones in Java Client. See the
AIOKafkaProducer API docs.

Besides being able to commit several topics atomically, as offsets are also stored in a separate system topic it’s possible
to commit a consumer offset as part of the same transaction:

async with producer.transaction():
commit_offsets = {

TopicPartition("some-topic", 0): 100
}
await producer.send_offsets_to_transaction(

commit_offsets, "some-consumer-group")

See a more full example in Transactional Consume-Process-Produce.

New in version 0.5.0.

4.1.5 Returned RecordMetadata object

After a message is sent, the user receives a RecordMetadata object.

Note: In a very rare case, when Idempotent or Transactional producer is used and there was a long wait between batch
initial send and a retry, producer may return offset == -1 and timestamp == -1 as Broker already expired the
metadata for this produce sequence and only knows that it’s a duplicate due to a larger sequence present

4.1. Producer client 11

aiokafka Documentation, Release 0.8.0

4.1.6 Direct batch control

Users who need precise control over batch flow may use the lower-level create_batch() and send_batch() inter-
faces:

Create the batch without queueing for delivery.
batch = producer.create_batch()

Populate the batch. The append() method will return metadata for the
added message or None if batch is full.
for i in range(2):

metadata = batch.append(value=b"msg %d" % i, key=None, timestamp=None)
assert metadata is not None

Optionally close the batch to further submission. If left open, the batch
may be appended to by producer.send().
batch.close()

Add the batch to the first partition's submission queue. If this method
times out, we can say for sure that batch will never be sent.
fut = await producer.send_batch(batch, "my_topic", partition=1)

Batch will either be delivered or an unrecoverable error will occur.
Cancelling this future will not cancel the send.
record = await fut

While any number of batches may be created, only a single batch per partition is sent at a time. Additional calls to
send_batch() against the same partition will wait for the inflight batch to be delivered before sending.

Upon delivery, the record’s offset will match the batch’s first message.

4.2 Consumer client

AIOKafkaConsumer is a client that consumes records from a Kafka cluster. Most simple usage would be:

consumer = aiokafka.AIOKafkaConsumer(
"my_topic",
bootstrap_servers='localhost:9092'

)
await consumer.start()
try:

async for msg in consumer:
print(

"{}:{:d}:{:d}: key={} value={} timestamp_ms={}".format(
msg.topic, msg.partition, msg.offset, msg.key, msg.value,
msg.timestamp)

)
finally:

await consumer.stop()

Note: msg.value and msg.key are raw bytes, use AIOKafkaConsumer’s key_deserializer and value_deserializer

12 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

configuration if you need to decode them.

Note: AIOKafkaConsumer maintains TCP connections as well as a few background tasks to fetch data and coordinate
assignments. Failure to call AIOKafkaConsumer.stop() after consumer use will leave background tasks running.

AIOKafkaConsumer transparently handles the failure of Kafka brokers and transparently adapts as topic partitions
it fetches migrate within the cluster. It also interacts with the broker to allow groups of consumers to load balance
consumption using Consumer Groups.

4.2.1 Offsets and Consumer Position

Kafka maintains a numerical offset for each record in a partition. This offset acts as a unique identifier of a record
within that partition and also denotes the position of the consumer in the partition. For example:

msg = await consumer.getone()
print(msg.offset) # Unique msg autoincrement ID in this topic-partition.

tp = aiokafka.TopicPartition(msg.topic, msg.partition)

position = await consumer.position(tp)
Position is the next fetched offset
assert position == msg.offset + 1

committed = await consumer.committed(tp)
print(committed)

Note: To use the commit() and committed() APIs you need to set group_id to something other than None. See
consumer-groups below.

Here if the consumer is at position 5, it has consumed records with offsets 0 through 4 and will next receive the record
with offset 5.

There are actually two notions of position:

• The position gives the offset of the next record that should be given out. It will be one larger than the highest
offset the consumer has seen in that partition. It automatically increases every time the consumer yields messages
in either getmany() or getone() calls.

• The committed position is the last offset that has been stored securely. Should the process restart, this is the offset
that the consumer will start from. The consumer can either automatically commit offsets periodically, or it can
choose to control this committed position manually by calling await consumer.commit().

This distinction gives the consumer control over when a record is considered consumed. It is discussed in further detail
below.

4.2. Consumer client 13

aiokafka Documentation, Release 0.8.0

Manual vs automatic committing

For most simple use cases auto committing is probably the best choice:

consumer = AIOKafkaConsumer(
"my_topic",
bootstrap_servers='localhost:9092',
group_id="my_group", # Consumer must be in a group to commit
enable_auto_commit=True, # Is True by default anyway
auto_commit_interval_ms=1000, # Autocommit every second
auto_offset_reset="earliest", # If committed offset not found, start

from beginning
)
await consumer.start()

async for msg in consumer: # Will periodically commit returned messages.
process message
pass

This example can have “At least once” delivery semantics, but only if we process messages one at a time. If you want
“At least once” semantics for batch operations you should use manual commit:

consumer = AIOKafkaConsumer(
"my_topic",
bootstrap_servers='localhost:9092',
group_id="my_group", # Consumer must be in a group to commit
enable_auto_commit=False, # Will disable autocommit
auto_offset_reset="earliest", # If committed offset not found, start

from beginning
)
await consumer.start()

batch = []
async for msg in consumer:

batch.append(msg)
if len(batch) == 100:

await process_msg_batch(batch)
await consumer.commit()
batch = []

Warning: When using manual commit it is recommended to provide a ConsumerRebalanceListener which
will process pending messages in the batch and commit before allowing rejoin. If your group will rebalance during
processing commit will fail with CommitFailedError, as partitions may have been processed by other consumer
already.

This example will hold on to messages until we have enough to process in bulk. The algorithm can be enhanced by
taking advantage of:

• await consumer.getmany() to avoid multiple calls to get a batch of messages.

• await consumer.highwater(partition) to understand if we have more unconsumed messages or this one
is the last one in the partition.

If you want to have more control over which partition and message is committed, you can specify offset manually:

14 Chapter 4. Authors and License

https://kafka.apache.org/documentation/#semantics

aiokafka Documentation, Release 0.8.0

while True:
result = await consumer.getmany(timeout_ms=10 * 1000)
for tp, messages in result.items():

if messages:
await process_msg_batch(messages)
Commit progress only for this partition
await consumer.commit({tp: messages[-1].offset + 1})

Note: The committed offset should always be the offset of the next message that your application will read. Thus,
when calling await consumer.commit(offset) you should add one to the offset of the last message processed.

Here we process a batch of messages per partition and commit not all consumed offsets, but only for the partition, we
processed.

Controlling The Consumer’s Position

In most use cases the consumer will simply consume records from beginning to end, periodically committing its position
(either automatically or manually). If you only want your consumer to process newest messages, you can ask it to start
from latest offset:

consumer = AIOKafkaConsumer(
"my_topic",
bootstrap_servers='localhost:9092',
auto_offset_reset="latest",

)
await consumer.start()

async for msg in consumer:
process message
pass

Note: If you have a valid committed position consumer will use that. auto_offset_reset will only be used when
the position is invalid.

Kafka also allows the consumer to manually control its position, moving forward or backwards in a partition at will
using AIOKafkaConsumer.seek(). For example, you can re-consume records:

msg = await consumer.getone()
tp = TopicPartition(msg.topic, msg.partition)

consumer.seek(tp, msg.offset)
msg2 = await consumer.getone()

assert msg2 == msg

Also you can combine it with offset_for_times API to query to specific offsets based on timestamp.

There are several use cases where manually controlling the consumer’s position can be useful.

One case is for time-sensitive record processing it may make sense for a consumer that falls far enough behind
to not attempt to catch up processing all records, but rather just skip to the most recent records. Or you can use

4.2. Consumer client 15

aiokafka Documentation, Release 0.8.0

offsets_for_times API to get the offsets after certain timestamp.

Another use case is for a system that maintains local state. In such a system the consumer will want to initialize its
position on startup to whatever is contained in the local store. Likewise, if the local state is destroyed (say because the
disk is lost) the state may be recreated on a new machine by re-consuming all the data and recreating the state (assuming
that Kafka is retaining sufficient history).

See also related configuration params and API docs:

• auto_offset_reset config option to set behaviour in case the position is either undefined or incorrect.

• seek(), seek_to_beginning(), seek_to_end() API’s to force position change on partition(‘s).

• offsets_for_times(), beginning_offsets(), end_offsets() API’s to query offsets for partitions even
if they are not assigned to this consumer.

Storing Offsets Outside Kafka

Storing offsets in Kafka is optional, you can store offsets in another place and use seek() API to start from saved posi-
tion. The primary use case for this is allowing the application to store both the offset and the results of the consumption
in the same system in a way that both the results and offsets are stored atomically. For example, if we save aggregated
by key counts in Redis:

import json
from collections import Counter

redis = await aioredis.create_redis(("localhost", 6379))
REDIS_HASH_KEY = "aggregated_count:my_topic:0"

tp = TopicPartition("my_topic", 0)
consumer = AIOKafkaConsumer(

bootstrap_servers='localhost:9092',
enable_auto_commit=False,

)
await consumer.start()
consumer.assign([tp])

Load initial state of aggregation and last processed offset
offset = -1
counts = Counter()
initial_counts = await redis.hgetall(REDIS_HASH_KEY, encoding="utf-8")
for key, state in initial_counts.items():

state = json.loads(state)
offset = max([offset, state['offset']])
counts[key] = state['count']

Same as with manual commit, you need to fetch next message, so +1
consumer.seek(tp, offset + 1)

async for msg in consumer:
key = msg.key.decode("utf-8")
counts[key] += 1
value = json.dumps({

"count": counts[key],
"offset": msg.offset

(continues on next page)

16 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

(continued from previous page)

})
await redis.hset(REDIS_HASH_KEY, key, value)

So to save results outside of Kafka you need to:

• Configure: enable.auto.commit=false

• Use the offset provided with each ConsumerRecord to save your position

• On restart or rebalance restore the position of the consumer using seek()

This is not always possible, but when it is it will make the consumption fully atomic and give exactly once semantics
that are stronger than the default at-least once semantics you get with Kafka’s offset commit functionality.

This type of usage is simplest when the partition assignment is also done manually (like we did above). If the partition
assignment is done automatically special care is needed to handle the case where partition assignments change. See
Local state and storing offsets outside of Kafka example for more details.

4.2.2 Consumer Groups and Topic Subscriptions

Kafka uses the concept of Consumer Groups to allow a pool of processes to divide the work of consuming and
processing records. These processes can either be running on the same machine or they can be distributed over many
machines to provide scalability and fault tolerance for processing.

All AIOKafkaConsumer instances sharing the same group_id will be part of the same Consumer Group:

Process 1
consumer = AIOKafkaConsumer(

"my_topic", bootstrap_servers='localhost:9092',
group_id="MyGreatConsumerGroup" # This will enable Consumer Groups

)
await consumer.start()
async for msg in consumer:

print("Process %s consumed msg from partition %s" % (
os.getpid(), msg.partition))

Process 2
consumer2 = AIOKafkaConsumer(

"my_topic", bootstrap_servers='localhost:9092',
group_id="MyGreatConsumerGroup" # This will enable Consumer Groups

)
await consumer2.start()
async for msg in consumer2:

print("Process %s consumed msg from partition %s" % (
os.getpid(), msg.partition))

Each consumer in a group can dynamically set the list of topics it wants to subscribe to through subscribe() call.
Kafka will deliver each message in the subscribed topics to only one of the processes in each consumer group. This is
achieved by balancing the partitions between all members in the consumer group so that each partition is assigned to
exactly one consumer in the group. So if there is a topic with four partitions and a consumer group with two processes,
each process would consume from two partitions.

Membership in a consumer group is maintained dynamically: if a process fails, the partitions assigned to it will be
reassigned to other consumers in the same group. Similarly, if a new consumer joins the group, partitions will be
moved from existing consumers to the new one. This is known as rebalancing the group.

4.2. Consumer client 17

aiokafka Documentation, Release 0.8.0

Note: Conceptually you can think of a Consumer Group as being a single logical subscriber that happens to be made
up of multiple processes.

In addition, when group reassignment happens automatically, consumers can be notified through a
ConsumerRebalanceListener, which allows them to finish necessary application-level logic such as state
cleanup, manual offset commits, etc. See subscribe() docs for more details.

Warning: Be careful with ConsumerRebalanceListener to avoid deadlocks. The Consumer will await the
defined handlers and will block subsequent calls to getmany() and getone(). For example this code will deadlock:

lock = asyncio.Lock()
consumer = AIOKafkaConsumer(...)

class MyRebalancer(aiokafka.ConsumerRebalanceListener):

async def on_partitions_revoked(self, revoked):
async with lock:

pass

async def on_partitions_assigned(self, assigned):
pass

async def main():
consumer.subscribe("topic", listener=MyRebalancer())
while True:

async with lock:
msgs = await consumer.getmany(timeout_ms=1000)
process messages

You need to put consumer.getmany(timeout_ms=1000) call outside of the lock.

For more information on how Consumer Groups are organized see Official Kafka Docs.

Topic subscription by pattern

AIOKafkaConsumer performs periodic metadata refreshes in the background and will notice when new partitions are
added to one of the subscribed topics or when a new topic matching a subscribed regex is created. For example:

consumer = AIOKafkaConsumer(
bootstrap_servers='localhost:9092',
metadata_max_age_ms=30000, # This controls the polling interval

)
await consumer.start()
consumer.subscribe(pattern="^MyGreatTopic-.*$")

async for msg in consumer: # Will detect metadata changes
print("Consumed msg %s %s %s" % (msg.topic, msg.partition, msg.value))

Here, the consumer will automatically detect new topics like MyGreatTopic-1 or MyGreatTopic-2 and start con-
suming them.

18 Chapter 4. Authors and License

https://kafka.apache.org/documentation/#intro_consumers

aiokafka Documentation, Release 0.8.0

If you use Consumer Groups the group’s Leader will trigger a group rebalance when it notices metadata changes. It’s
because only the Leader has full knowledge of which topics are assigned to the group.

Manual partition assignment

It is also possible for the consumer to manually assign specific partitions using assign([tp1, tp2]). In this case,
dynamic partition assignment and consumer group coordination will be disabled. For example:

consumer = AIOKafkaConsumer(
bootstrap_servers='localhost:9092'

)
tp1 = TopicPartition("my_topic", 1)
tp2 = TopicPartition("my_topic", 2)
consumer.assign([tp1, tp2])

async for msg in consumer:
print("Consumed msg %s %s %s", msg.topic, msg.partition, msg.value)

group_id can still be used for committing position, but be careful to avoid collisions with multiple instances sharing
the same group.

It is not possible to mix manual partition assignment assign() and topic subscription subscribe(). An attempt to
do so will result in an IllegalStateError.

Consumption Flow Control

By default Consumer will fetch from all partitions, effectively giving these partitions the same priority. However in
some cases, you would want for some partitions to have higher priority (say they have more lag and you want to catch
up). For example:

consumer = AIOKafkaConsumer("my_topic", ...)

partitions = [] # Fetch all partitions on first request
while True:

msgs = await consumer.getmany(*partitions)
process messages
await process_messages(msgs)

Prioritize partitions, that lag behind.
partitions = []
for partition in consumer.assignment():

highwater = consumer.highwater(partition)
position = await consumer.position(partition)
position_lag = highwater - position
timestamp = consumer.last_poll_timestamp(partition)
time_lag = time.time() * 1000 - timestamp
if position_lag > POSITION_THRESHOLD or time_lag > TIME_THRESHOLD:

partitions.append(partition)

Note: This interface differs from pause() / resume() interface of kafka-python and Java clients.

4.2. Consumer client 19

https://github.com/dpkp/kafka-python

aiokafka Documentation, Release 0.8.0

Here we will consume all partitions if they do not lag behind, but if some go above a certain threshold, we will consume
them to catch up. This can very well be used in a case where some consumer died and this consumer took over its
partitions, that are now lagging behind.

Some things to note about it:

• There may be a slight pause in consumption if you change the partitions you are fetching. This can happen
when Consumer requests a fetch for partitions that have no data available. Consider setting a relatively low
fetch_max_wait_ms to avoid this.

• The async for interface can not be used with explicit partition filtering, just use getone() instead.

Reading Transactional Messages

Transactions were introduced in Kafka 0.11.0 wherein applications can write to multiple topics and partitions atomi-
cally. In order for this to work, consumers reading from these partitions should be configured to only read committed
data. This can be achieved by by setting the isolation_level=read_committed in the consumer’s configuration:

consumer = aiokafka.AIOKafkaConsumer(
"my_topic",
bootstrap_servers='localhost:9092',
isolation_level="read_committed"

)
await consumer.start()
async for msg in consumer: # Only read committed tranasctions

pass

In read_committed mode, the consumer will read only those transactional messages which have been successfully
committed. It will continue to read non-transactional messages as before. There is no client-side buffering in
read_committed mode. Instead, the end offset of a partition for a read_committed consumer would be the offset of
the first message in the partition belonging to an open transaction. This offset is known as the Last Stable Offset
(LSO).

A read_committed consumer will only read up to the LSO and filter out any transactional messages which have been
aborted. The LSO also affects the behavior of seek_to_end() and end_offsets() for read_committed consumers,
details of which are in each method’s documentation. Finally, last_stable_offset() API was added similarly to
highwater() API to query the lSO on a currently assigned transaction:

async for msg in consumer: # Only read committed tranasctions
tp = TopicPartition(msg.topic, msg.partition)
lso = consumer.last_stable_offset(tp)
lag = lso - msg.offset
print(f"Consumer is behind by {lag} messages")

end_offsets = await consumer.end_offsets([tp])
assert end_offsets[tp] == lso

await consumer.seek_to_end(tp)
position = await consumer.position(tp)

Partitions with transactional messages will include commit or abort markers which indicate the result of a transac-
tion. There markers are not returned to applications, yet have an offset in the log. As a result, applications reading
from topics with transactional messages will see gaps in the consumed offsets. These missing messages would be the
transaction markers, and they are filtered out for consumers in both isolation levels. Additionally, applications using
read_committed consumers may also see gaps due to aborted transactions, since those messages would not be returned
by the consumer and yet would have valid offsets.

20 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

4.2.3 Detecting Consumer Failures

People who worked with kafka-python or Java Client probably know that the poll()API is designed to ensure liveness
of a Consumer Groups. In other words, Consumer will only be considered alive if it consumes messages. It’s not the
same for aiokafka, for more details read Difference between aiokafka and kafka-python.

aiokafka will join the group on start() and will send heartbeats in the background, keeping the group alive, same
as Java Client. But in the case of a rebalance it will also done in the background.

Offset commits in autocommit mode is done strictly by time in the background (in Java client autocommit will not be
done if you don’t call poll() another time).

4.3 Difference between aiokafka and kafka-python

4.3.1 Why do we need another library?

kafka-python is a great project, which tries to fully mimic the interface of the Java Client API. It is more feature
oriented, rather than speed, but still gives quite good throughput. It’s actively developed and is fast to react to changes
in the Java client.

While kafka-python has a lot of great features it is made to be used in a Threaded environment. Even more, it mimics
Java’s client, making it Java’s threaded environment, which does not have that much of asynchronous ways of doing
things. It’s not bad as Java’s Threads are very powerful with the ability to use multiple cores.

The API itself just can’t be adopted to be used in an asynchronous way (even though the library does asynchronous IO
using selectors). It has too much blocking behavior including blocking socket usage, threading synchronization, etc.
Examples would be:

• bootstrap, which blocks in the constructor itself

• blocking iterator for consumption

• sending produce requests block if buffer is full

All those can’t be changed to use FutureAPI seamlessly. So to get a normal, non-blocking interface based on Future’s
and coroutines a new library needed to be written.

4.3.2 API differences and rationale

aiokafka has some differences in API design. While the Producer is mostly the same, Consumer has some significant
differences, that we want to talk about.

Consumer has no poll() method

In kafka-python, kafka.KafkaConsumer.poll() is a blocking call that performs not only message fetching, but also:

• Socket polling using epoll, kqueue or other available API of your OS.

• Ensures liveliness of a Consumer Group

• Does autocommit

This will never be a case where you own the IO loop, at least not with socket polling. To avoid misunderstandings as to
why do those methods behave in a different way AIOKafkaConsumer exposes this interface under the name getmany()
with some other differences described below.

4.3. Difference between aiokafka and kafka-python 21

https://github.com/dpkp/kafka-python
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.poll
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.poll
https://github.com/dpkp/kafka-python
https://kafka.apache.org/documentation/#api
https://github.com/dpkp/kafka-python
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://github.com/dpkp/kafka-python
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.poll

aiokafka Documentation, Release 0.8.0

Rebalances are happening in the background

In original Kafka Java Client before 0.10.1 heartbeats were only sent if poll() was called. This lead to a lot of issues
(reasons for KIP-41 and KIP-62 proposals) and workarounds using pause() and poll(0) for heartbeats. After Java
client and kafka-python also changed the behaviour to a background Thread sending, that mitigated most issues.

aiokafka delegates heartbeating to a background Task and will send heartbeats to Coordinator as long as the event
loop is running. This behaviour is very similar to Java client, with the exception of no heartbeats on long CPU bound
methods.

But aiokafka also performs group rebalancing in the same background Task. This means, that the processing time
between getmany() calls actually does not affect rebalancing. KIP-62 proposed to provide max.poll.interval.
ms as the configuration for both rebalance timeout and consumer processing timeout. In aiokafka it does not
make much sense, as those 2 are not related, so we added both configurations (rebalance_timeout_ms and
max_poll_interval_ms).

It is quite critical to provide ConsumerRebalanceListener if you need to control rebalance start and end moments. In
that case set the rebalance_timeout_ms to the maximum time your application can spend waiting in the callback. If
your callback waits for the last getmany() result to be processed, it is safe to set this value to max_poll_interval_ms,
same as in Java client.

Prefetching is more sophisticated

In the Kafka Java Client and kafka-python, the prefetching is very simple, as it only performs prefetches:

• in poll() call if we don’t have enough data stored to satisfy another poll()

• in the iterator interface if we have processed nearly all data.

A very simplified version would be:

def poll():
max_records = self.config['max_poll_records']
records = consumer.fethed_records(max_records)
if not consumer.has_enough_records(max_records)

consumer.send_fetches() # prefetch another batch
return records

This works great for throughput as the algorithm is simple and we pipeline IO task with record processing.

But it does not perform as great in case of semantic partitioning, where you may have per-partition processing. In
this case latency will be bound to the time of processing of data in all topics.

Which is why aiokafka tries to do prefetches per partition. For example, if we processed all data pending for a
partition in iterator interface, aiokafka will try to prefetch new data right away. The same interface could be built on
top of kafka-python’s pause() API, but would require a lot of code.

Note: Using getmany() without specifying partitions will result in the same prefetch behaviour as using poll().

22 Chapter 4. Authors and License

https://cwiki.apache.org/confluence/display/KAFKA/KIP-41%3A+KafkaConsumer+Max+Records
https://cwiki.apache.org/confluence/display/KAFKA/KIP-62%3A+Allow+consumer+to+send+heartbeats+from+a+background+thread
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.pause
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.poll
https://github.com/dpkp/kafka-python
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.poll
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.poll
https://github.com/dpkp/kafka-python
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.pause
https://gist.github.com/tvoinarovskyi/05a5d083a0f96cae3e9b4c2af580be74
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.poll

aiokafka Documentation, Release 0.8.0

4.4 API Documentation

4.4.1 Producer class

class aiokafka.AIOKafkaProducer(*, loop=None, bootstrap_servers='localhost', client_id=None,
metadata_max_age_ms=300000, request_timeout_ms=40000,
api_version='auto', acks=<object object>, key_serializer=None,
value_serializer=None, compression_type=None, max_batch_size=16384,
partitioner=<kafka.partitioner.default.DefaultPartitioner object>,
max_request_size=1048576, linger_ms=0, send_backoff_ms=100,
retry_backoff_ms=100, security_protocol='PLAINTEXT',
ssl_context=None, connections_max_idle_ms=540000,
enable_idempotence=False, transactional_id=None,
transaction_timeout_ms=60000, sasl_mechanism='PLAIN',
sasl_plain_password=None, sasl_plain_username=None,
sasl_kerberos_service_name='kafka', sasl_kerberos_domain_name=None,
sasl_oauth_token_provider=None)

A Kafka client that publishes records to the Kafka cluster.

The producer consists of a pool of buffer space that holds records that haven’t yet been transmitted to the server
as well as a background task that is responsible for turning these records into requests and transmitting them to
the cluster.

The send() method is asynchronous. When called it adds the record to a buffer of pending record sends and
immediately returns. This allows the producer to batch together individual records for efficiency.

The acks config controls the criteria under which requests are considered complete. The all setting will result
in waiting for all replicas to respond, the slowest but most durable setting.

The key_serializer and value_serializer instruct how to turn the key and value objects the user provides into
bytes.

Parameters

• bootstrap_servers (str, list(str)) – a host[:port] string or list of host[:port]
strings that the producer should contact to bootstrap initial cluster metadata. This does not
have to be the full node list. It just needs to have at least one broker that will respond to
a Metadata API Request. Default port is 9092. If no servers are specified, will default to
localhost:9092.

• client_id (str) – a name for this client. This string is passed in each request to servers and
can be used to identify specific server-side log entries that correspond to this client. Default:
aiokafka-producer-# (appended with a unique number per instance)

• key_serializer (Callable) – used to convert user-supplied keys to bytes If not None,
called as f(key), should return bytes. Default: None.

• value_serializer (Callable) – used to convert user-supplied message values to bytes.
If not None, called as f(value), should return bytes. Default: None.

• acks (Any) – one of 0, 1, all. The number of acknowledgments the producer requires the
leader to have received before considering a request complete. This controls the durability
of records that are sent. The following settings are common:

– 0: Producer will not wait for any acknowledgment from the server at all. The message
will immediately be added to the socket buffer and considered sent. No guarantee can be
made that the server has received the record in this case, and the retries configuration will

4.4. API Documentation 23

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None

aiokafka Documentation, Release 0.8.0

not take effect (as the client won’t generally know of any failures). The offset given back
for each record will always be set to -1.

– 1: The broker leader will write the record to its local log but will respond without awaiting
full acknowledgement from all followers. In this case should the leader fail immediately
after acknowledging the record but before the followers have replicated it then the record
will be lost.

– all: The broker leader will wait for the full set of in-sync replicas to acknowledge the
record. This guarantees that the record will not be lost as long as at least one in-sync
replica remains alive. This is the strongest available guarantee.

If unset, defaults to acks=1. If enable_idempotence is True defaults to acks=all

• compression_type (str) – The compression type for all data generated by the producer.
Valid values are gzip, snappy, lz4, zstd or None. Compression is of full batches of data,
so the efficacy of batching will also impact the compression ratio (more batching means
better compression). Default: None.

• max_batch_size (int) – Maximum size of buffered data per partition. After this amount
send() coroutine will block until batch is drained. Default: 16384

• linger_ms (int) – The producer groups together any records that arrive in between request
transmissions into a single batched request. Normally this occurs only under load when
records arrive faster than they can be sent out. However in some circumstances the client may
want to reduce the number of requests even under moderate load. This setting accomplishes
this by adding a small amount of artificial delay; that is, if first request is processed faster, than
linger_ms, producer will wait linger_ms - process_time. Default: 0 (i.e. no delay).

• partitioner (Callable) – Callable used to determine which partition each mes-
sage is assigned to. Called (after key serialization): partitioner(key_bytes,
all_partitions, available_partitions). The default partitioner implementation
hashes each non-None key using the same murmur2 algorithm as the Java client so that
messages with the same key are assigned to the same partition. When a key is None, the
message is delivered to a random partition (filtered to partitions with available leaders only,
if possible).

• max_request_size (int) – The maximum size of a request. This is also effectively a cap
on the maximum record size. Note that the server has its own cap on record size which may
be different from this. This setting will limit the number of record batches the producer will
send in a single request to avoid sending huge requests. Default: 1048576.

• metadata_max_age_ms (int) – The period of time in milliseconds after which we force a
refresh of metadata even if we haven’t seen any partition leadership changes to proactively
discover any new brokers or partitions. Default: 300000

• request_timeout_ms (int) – Produce request timeout in milliseconds. As it’s sent as
part of ProduceRequest (it’s a blocking call), maximum waiting time can be up to 2 *
request_timeout_ms. Default: 40000.

• retry_backoff_ms (int) – Milliseconds to backoff when retrying on errors. Default: 100.

• api_version (str) – specify which kafka API version to use. If set to auto, will attempt
to infer the broker version by probing various APIs. Default: auto

• security_protocol (str) – Protocol used to communicate with brokers. Valid values are:
PLAINTEXT, SSL. Default: PLAINTEXT. Default: PLAINTEXT.

• ssl_context (ssl.SSLContext) – pre-configured SSLContext for wrapping socket con-
nections. Directly passed into asyncio’s create_connection(). For more information see
SSL Authentication. Default: None

24 Chapter 4. Authors and License

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection
https://docs.python.org/3/library/constants.html#None

aiokafka Documentation, Release 0.8.0

• connections_max_idle_ms (int) – Close idle connections after the number of millisec-
onds specified by this config. Specifying None will disable idle checks. Default: 540000 (9
minutes).

• enable_idempotence (bool) – When set to True, the producer will ensure that exactly
one copy of each message is written in the stream. If False, producer retries due to broker
failures, etc., may write duplicates of the retried message in the stream. Note that enabling
idempotence acks to set to all. If it is not explicitly set by the user it will be chosen. If
incompatible values are set, a ValueError will be thrown. New in version 0.5.0.

• sasl_mechanism (str) – Authentication mechanism when security_protocol is configured
for SASL_PLAINTEXT or SASL_SSL. Valid values are: PLAIN, GSSAPI, SCRAM-SHA-256,
SCRAM-SHA-512, OAUTHBEARER. Default: PLAIN

• sasl_plain_username (str) – username for SASL PLAIN authentication. Default: None

• sasl_plain_password (str) – password for SASL PLAIN authentication. Default: None

• sasl_oauth_token_provider (AbstractTokenProvider) – OAuthBearer token
provider instance. (See kafka.oauth.abstract). Default: None

Note: Many configuration parameters are taken from the Java client: https://kafka.apache.org/documentation.
html#producerconfigs

create_batch()
Create and return an empty BatchBuilder.

The batch is not queued for send until submission to send_batch().

Returns empty batch to be filled and submitted by the caller.

Return type BatchBuilder

async flush()
Wait until all batches are Delivered and futures resolved

async partitions_for(topic)
Returns set of all known partitions for the topic.

async send(topic, value=None, key=None, partition=None, timestamp_ms=None, headers=None)
Publish a message to a topic.

Parameters

• topic (str) – topic where the message will be published

• value (Optional) – message value. Must be type bytes, or be serializable to bytes
via configured value_serializer. If value is None, key is required and message acts as a
delete.

See Kafka compaction documentation for more details. (compaction requires kafka >=
0.8.1)

• partition (int, Optional) – optionally specify a partition. If not set, the partition will
be selected using the configured partitioner.

• key (Optional) – a key to associate with the message. Can be used to determine which
partition to send the message to. If partition is None (and producer’s partitioner config is
left as default), then messages with the same key will be delivered to the same partition
(but if key is None, partition is chosen randomly). Must be type bytes, or be serializable
to bytes via configured key_serializer.

4.4. API Documentation 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://kafka.apache.org/documentation.html#producerconfigs
https://kafka.apache.org/documentation.html#producerconfigs
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://kafka.apache.org/documentation.html#compaction
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes

aiokafka Documentation, Release 0.8.0

• timestamp_ms (int, Optional) – epoch milliseconds (from Jan 1 1970 UTC) to use as
the message timestamp. Defaults to current time.

• headers (Optional) – Kafka headers to be included in the message using the format
[("key", b"value")]. Iterable of tuples where key is a normal string and value is a
byte string.

Returns object that will be set when message is processed

Return type asyncio.Future

Raises KafkaTimeoutError – if we can’t schedule this record (pending buffer is full) in up to
request_timeout_ms milliseconds.

Note: The returned future will wait based on request_timeout_ms setting. Cancelling the returned future
will not stop event from being sent, but cancelling the send() coroutine itself will.

async send_and_wait(topic, value=None, key=None, partition=None, timestamp_ms=None,
headers=None)

Publish a message to a topic and wait the result

async send_batch(batch, topic, *, partition)
Submit a BatchBuilder for publication.

Parameters

• batch (BatchBuilder) – batch object to be published.

• topic (str) – topic where the batch will be published.

• partition (int) – partition where this batch will be published.

Returns

object that will be set when the batch is delivered.

Return type asyncio.Future

async start()
Connect to Kafka cluster and check server version

async stop()
Flush all pending data and close all connections to kafka cluster

transaction()
Start a transaction context

26 Chapter 4. Authors and License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future

aiokafka Documentation, Release 0.8.0

4.4.2 Consumer class

class aiokafka.AIOKafkaConsumer(*topics, loop=None, bootstrap_servers='localhost',
client_id='aiokafka-0.8.0', group_id=None, key_deserializer=None,
value_deserializer=None, fetch_max_wait_ms=500,
fetch_max_bytes=52428800, fetch_min_bytes=1,
max_partition_fetch_bytes=1048576, request_timeout_ms=40000,
retry_backoff_ms=100, auto_offset_reset='latest',
enable_auto_commit=True, auto_commit_interval_ms=5000,
check_crcs=True, metadata_max_age_ms=300000,
partition_assignment_strategy=(<class
'kafka.coordinator.assignors.roundrobin.RoundRobinPartitionAssignor'>,
), max_poll_interval_ms=300000, rebalance_timeout_ms=None,
session_timeout_ms=10000, heartbeat_interval_ms=3000,
consumer_timeout_ms=200, max_poll_records=None, ssl_context=None,
security_protocol='PLAINTEXT', api_version='auto',
exclude_internal_topics=True, connections_max_idle_ms=540000,
isolation_level='read_uncommitted', sasl_mechanism='PLAIN',
sasl_plain_password=None, sasl_plain_username=None,
sasl_kerberos_service_name='kafka', sasl_kerberos_domain_name=None,
sasl_oauth_token_provider=None)

A client that consumes records from a Kafka cluster.

The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions
are created or migrate between brokers.

It also interacts with the assigned Kafka Group Coordinator node to allow multiple consumers to load balance
consumption of topics (feature of Kafka >= 0.9.0.0).

Parameters

• *topics (list(str)) – optional list of topics to subscribe to. If not set, call subscribe()
or assign() before consuming records. Passing topics directly is same as calling
subscribe() API.

• bootstrap_servers (str, list(str)) – a host[:port] string (or list of
host[:port] strings) that the consumer should contact to bootstrap initial cluster
metadata.

This does not have to be the full node list. It just needs to have at least one broker that will
respond to a Metadata API Request. Default port is 9092. If no servers are specified, will
default to localhost:9092.

• client_id (str) – a name for this client. This string is passed in each request to servers and
can be used to identify specific server-side log entries that correspond to this client. Also sub-
mitted to GroupCoordinator for logging with respect to consumer group administration.
Default: aiokafka-{version}

• group_id (str or None) – name of the consumer group to join for dynamic partition as-
signment (if enabled), and to use for fetching and committing offsets. If None, auto-partition
assignment (via group coordinator) and offset commits are disabled. Default: None

• key_deserializer (Callable) – Any callable that takes a raw message key and returns a
deserialized key.

• value_deserializer (Callable, Optional) – Any callable that takes a raw message
value and returns a deserialized value.

4.4. API Documentation 27

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

aiokafka Documentation, Release 0.8.0

• fetch_min_bytes (int) – Minimum amount of data the server should return for a fetch
request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1.

• fetch_max_bytes (int) – The maximum amount of data the server should return for a
fetch request. This is not an absolute maximum, if the first message in the first non-empty
partition of the fetch is larger than this value, the message will still be returned to ensure that
the consumer can make progress. NOTE: consumer performs fetches to multiple brokers in
parallel so memory usage will depend on the number of brokers containing partitions for the
topic. Supported Kafka version >= 0.10.1.0. Default: 52428800 (50 Mb).

• fetch_max_wait_ms (int) – The maximum amount of time in milliseconds the server will
block before answering the fetch request if there isn’t sufficient data to immediately satisfy
the requirement given by fetch_min_bytes. Default: 500.

• max_partition_fetch_bytes (int) – The maximum amount of data per-partition the
server will return. The maximum total memory used for a request = #partitions *
max_partition_fetch_bytes. This size must be at least as large as the maximum mes-
sage size the server allows or else it is possible for the producer to send messages larger than
the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large
message on a certain partition. Default: 1048576.

• max_poll_records (int) – The maximum number of records returned in a single call to
getmany(). Defaults None, no limit.

• request_timeout_ms (int) – Client request timeout in milliseconds. Default: 40000.

• retry_backoff_ms (int) – Milliseconds to backoff when retrying on errors. Default: 100.

• auto_offset_reset (str) – A policy for resetting offsets on OffsetOutOfRangeError
errors: earliest will move to the oldest available message, latest will move to the most
recent, and none will raise an exception so you can handle this case. Default: latest.

• enable_auto_commit (bool) – If true the consumer’s offset will be periodically committed
in the background. Default: True.

• auto_commit_interval_ms (int) – milliseconds between automatic offset commits, if
enable_auto_commit is True. Default: 5000.

• check_crcs (bool) – Automatically check the CRC32 of the records consumed. This en-
sures no on-the-wire or on-disk corruption to the messages occurred. This check adds some
overhead, so it may be disabled in cases seeking extreme performance. Default: True

• metadata_max_age_ms (int) – The period of time in milliseconds after which we force a
refresh of metadata even if we haven’t seen any partition leadership changes to proactively
discover any new brokers or partitions. Default: 300000

• partition_assignment_strategy (list) – List of objects to use to distribute partition
ownership amongst consumer instances when group management is used. This preference
is implicit in the order of the strategies in the list. When assignment strategy changes: to
support a change to the assignment strategy, new versions must enable support both for the
old assignment strategy and the new one. The coordinator will choose the old assignment
strategy until all members have been updated. Then it will choose the new strategy. Default:
[RoundRobinPartitionAssignor]

• max_poll_interval_ms (int) – Maximum allowed time between calls to consume mes-
sages (e.g., getmany()). If this interval is exceeded the consumer is considered failed and
the group will rebalance in order to reassign the partitions to another consumer group mem-
ber. If API methods block waiting for messages, that time does not count against this timeout.
See KIP-62 for more information. Default 300000

28 Chapter 4. Authors and License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://cwiki.apache.org/confluence/display/KAFKA/KIP-62%3A+Allow+consumer+to+send+heartbeats+from+a+background+thread

aiokafka Documentation, Release 0.8.0

• rebalance_timeout_ms (int) – The maximum time server will wait for this con-
sumer to rejoin the group in a case of rebalance. In Java client this behaviour is
bound to max.poll.interval.ms configuration, but as aiokafka will rejoin the group
in the background, we decouple this setting to allow finer tuning by users that use
ConsumerRebalanceListener to delay rebalacing. Defaults to session_timeout_ms

• session_timeout_ms (int) – Client group session and failure detection timeout. The
consumer sends periodic heartbeats (heartbeat.interval.ms) to indicate its liveness to the
broker. If no hearts are received by the broker for a group member within the session timeout,
the broker will remove the consumer from the group and trigger a rebalance. The allowed
range is configured with the broker configuration properties group.min.session.timeout.ms
and group.max.session.timeout.ms. Default: 10000

• heartbeat_interval_ms (int) – The expected time in milliseconds between heartbeats
to the consumer coordinator when using Kafka’s group management feature. Heartbeats are
used to ensure that the consumer’s session stays active and to facilitate rebalancing when new
consumers join or leave the group. The value must be set lower than session_timeout_ms,
but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to
control the expected time for normal rebalances. Default: 3000

• consumer_timeout_ms (int) – maximum wait timeout for background fetching routine.
Mostly defines how fast the system will see rebalance and request new data for new partitions.
Default: 200

• api_version (str) – specify which kafka API version to use. AIOKafkaConsumer sup-
ports Kafka API versions >=0.9 only. If set to auto, will attempt to infer the broker version
by probing various APIs. Default: auto

• security_protocol (str) – Protocol used to communicate with brokers. Valid values are:
PLAINTEXT, SSL. Default: PLAINTEXT.

• ssl_context (ssl.SSLContext) – pre-configured SSLContext for wrapping socket con-
nections. Directly passed into asyncio’s create_connection(). For more information see
SSL Authentication. Default: None.

• exclude_internal_topics (bool) – Whether records from internal topics (such as off-
sets) should be exposed to the consumer. If set to True the only way to receive records from
an internal topic is subscribing to it. Requires 0.10+ Default: True

• connections_max_idle_ms (int) – Close idle connections after the number of millisec-
onds specified by this config. Specifying None will disable idle checks. Default: 540000 (9
minutes).

• isolation_level (str) – Controls how to read messages written transactionally.

If set to read_committed, getmany() will only return transactional messages which have
been committed. If set to read_uncommitted (the default), getmany()will return all mes-
sages, even transactional messages which have been aborted.

Non-transactional messages will be returned unconditionally in either mode.

Messages will always be returned in offset order. Hence, in read_committed mode,
getmany() will only return messages up to the last stable offset (LSO), which is the one
less than the offset of the first open transaction. In particular any messages appearing af-
ter messages belonging to ongoing transactions will be withheld until the relevant trans-
action has been completed. As a result, read_committed consumers will not be able to
read up to the high watermark when there are in flight transactions. Further, when in
read_committed the seek_to_end method will return the LSO. See method docs below. De-
fault: read_uncommitted

4.4. API Documentation 29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

aiokafka Documentation, Release 0.8.0

• sasl_mechanism (str) – Authentication mechanism when security_protocol is configured
for SASL_PLAINTEXT or SASL_SSL. Valid values are: PLAIN, GSSAPI, SCRAM-SHA-256,
SCRAM-SHA-512, OAUTHBEARER. Default: PLAIN

• sasl_plain_username (str) – username for SASL PLAIN authentication. Default: None

• sasl_plain_password (str) – password for SASL PLAIN authentication. Default: None

• sasl_oauth_token_provider (AbstractTokenProvider) – OAuthBearer token
provider instance. (See kafka.oauth.abstract). Default: None

Note: Many configuration parameters are taken from Java Client: https://kafka.apache.org/documentation.
html#newconsumerconfigs

assign(partitions)
Manually assign a list of TopicPartition to this consumer.

This interface does not support incremental assignment and will replace the previous assignment (if there
was one).

Parameters partitions (list(TopicPartition)) – assignment for this instance.

Raises IllegalStateError – if consumer has already called subscribe()

Warning: It is not possible to use both manual partition assignment with assign() and group as-
signment with subscribe().

Note: Manual topic assignment through this method does not use the consumer’s group management
functionality. As such, there will be no rebalance operation triggered when group membership or cluster
and topic metadata change.

assignment()
Get the set of partitions currently assigned to this consumer.

If partitions were directly assigned using assign(), then this will simply return the same partitions that
were previously assigned.

If topics were subscribed using subscribe(), then this will give the set of topic partitions currently as-
signed to the consumer (which may be empty if the assignment hasn’t happened yet or if the partitions are
in the process of being reassigned).

Returns the set of partitions currently assigned to this consumer

Return type set(TopicPartition)

async beginning_offsets(partitions)
Get the first offset for the given partitions.

This method does not change the current consumer position of the partitions.

Note: This method may block indefinitely if the partition does not exist.

Parameters partitions (list[TopicPartition]) – List of TopicPartition instances to
fetch offsets for.

30 Chapter 4. Authors and License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://kafka.apache.org/documentation.html#newconsumerconfigs
https://kafka.apache.org/documentation.html#newconsumerconfigs
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list

aiokafka Documentation, Release 0.8.0

Returns mapping of partition to earliest available offset.

Return type dict [TopicPartition, int]

Raises

• UnsupportedVersionError – If the broker does not support looking up the offsets by
timestamp.

• KafkaTimeoutError – If fetch failed in request_timeout_ms.

New in version 0.3.0.

async commit(offsets=None)
Commit offsets to Kafka.

This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch
after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka,
this API should not be used.

Currently only supports kafka-topic offset storage (not Zookeeper)

When explicitly passing offsets use either offset of next record, or tuple of offset and metadata:

tp = TopicPartition(msg.topic, msg.partition)
metadata = "Some utf-8 metadata"
Either
await consumer.commit({tp: msg.offset + 1})
Or position directly
await consumer.commit({tp: (msg.offset + 1, metadata)})

Note: If you want fire and forget commit, like commit_async() in kafka-python, just run it in a task.
Something like:

fut = loop.create_task(consumer.commit())
fut.add_done_callback(on_commit_done)

Parameters offsets (dict, Optional) – A mapping from TopicPartition to (offset,
metadata) to commit with the configured group_id. Defaults to current consumed offsets
for all subscribed partitions.

Raises

• CommitFailedError – If membership already changed on broker.

• IllegalOperation – If used with group_id == None.

• IllegalStateError – If partitions not assigned.

• KafkaError – If commit failed on broker side. This could be due to invalid offset, too
long metadata, authorization failure, etc.

• ValueError – If offsets is of wrong format.

Changed in version 0.4.0: Changed AssertionError to IllegalStateError in case of unassigned par-
tition.

Changed in version 0.4.0: Will now raise CommitFailedError in case membership changed, as (possibly)
this partition is handled by another consumer.

4.4. API Documentation 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html#kafka.KafkaConsumer.commit_async
https://github.com/dpkp/kafka-python
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

aiokafka Documentation, Release 0.8.0

async committed(partition)
Get the last committed offset for the given partition. (whether the commit happened by this process or
another).

This offset will be used as the position for the consumer in the event of a failure.

This call will block to do a remote call to get the latest offset, as those are not cached by consumer (Trans-
actional Producer can change them without Consumer knowledge as of Kafka 0.11.0)

Parameters partition (TopicPartition) – the partition to check

Returns The last committed offset, or None if there was no prior commit.

Raises IllegalOperation – If used with group_id == None

async end_offsets(partitions)
Get the last offset for the given partitions. The last offset of a partition is the offset of the upcoming message,
i.e. the offset of the last available message + 1.

This method does not change the current consumer position of the partitions.

Note: This method may block indefinitely if the partition does not exist.

Parameters partitions (list[TopicPartition]) – List of TopicPartition instances to
fetch offsets for.

Returns mapping of partition to last available offset + 1.

Return type dict [TopicPartition, int]

Raises

• UnsupportedVersionError – If the broker does not support looking up the offsets by
timestamp.

• KafkaTimeoutError – If fetch failed in request_timeout_ms

New in version 0.3.0.

async getmany(*partitions, timeout_ms=0, max_records=None)
Get messages from assigned topics / partitions.

Prefetched messages are returned in batches by topic-partition. If messages is not available in the prefetched
buffer this method waits timeout_ms milliseconds.

Parameters

• partitions (list[TopicPartition]) – The partitions that need fetching message. If
no one partition specified then all subscribed partitions will be used

• timeout_ms (int, Optional) – milliseconds spent waiting if data is not available in the
buffer. If 0, returns immediately with any records that are available currently in the buffer,
else returns empty. Must not be negative. Default: 0

Returns topic to list of records since the last fetch for the subscribed list of topics and partitions

Return type dict(TopicPartition, list[ConsumerRecord])

Example usage:

32 Chapter 4. Authors and License

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

aiokafka Documentation, Release 0.8.0

data = await consumer.getmany()
for tp, messages in data.items():

topic = tp.topic
partition = tp.partition
for message in messages:

Process message
print(message.offset, message.key, message.value)

async getone(*partitions)
Get one message from Kafka. If no new messages prefetched, this method will wait for it.

Parameters partitions (list(TopicPartition)) – Optional list of partitions to return
from. If no partitions specified then returned message will be from any partition, which
consumer is subscribed to.

Returns the message

Return type ConsumerRecord

Will return instance of

collections.namedtuple(
"ConsumerRecord",
["topic", "partition", "offset", "key", "value"])

Example usage:

while True:
message = await consumer.getone()
topic = message.topic
partition = message.partition
Process message
print(message.offset, message.key, message.value)

highwater(partition)
Last known highwater offset for a partition.

A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful
for calculating lag, by comparing with the reported position. Note that both position and highwater refer to
the next offset – i.e., highwater offset is one greater than the newest available message.

Highwater offsets are returned as part of FetchResponse, so will not be available if messages for this
partition were not requested yet.

Parameters partition (TopicPartition) – partition to check

Returns offset if available

Return type int or None

last_poll_timestamp(partition)
Returns the timestamp of the last poll of this partition (in ms). It is the last time highwater() and
last_stable_offset() were updated. However it does not mean that new messages were received.

As with highwater() will not be available until some messages are consumed.

Parameters partition (TopicPartition) – partition to check

Returns timestamp if available

Return type int or None

4.4. API Documentation 33

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

aiokafka Documentation, Release 0.8.0

last_stable_offset(partition)
Returns the Last Stable Offset of a topic. It will be the last offset up to which point all transactions were
completed. Only available in with isolation_level read_committed, in read_uncommitted will always return
-1. Will return None for older Brokers.

As with highwater() will not be available until some messages are consumed.

Parameters partition (TopicPartition) – partition to check

Returns offset if available

Return type int or None

async offsets_for_times(timestamps)
Look up the offsets for the given partitions by timestamp. The returned offset for each partition is the earliest
offset whose timestamp is greater than or equal to the given timestamp in the corresponding partition.

The consumer does not have to be assigned the partitions.

If the message format version in a partition is before 0.10.0, i.e. the messages do not have timestamps, None
will be returned for that partition.

Note: This method may block indefinitely if the partition does not exist.

Parameters timestamps (dict(TopicPartition, int)) – mapping from partition to the
timestamp to look up. Unit should be milliseconds since beginning of the epoch (midnight
Jan 1, 1970 (UTC))

Returns mapping from partition to the timestamp and offset of the first message with timestamp
greater than or equal to the target timestamp.

Return type dict(TopicPartition, OffsetAndTimestamp)

Raises

• ValueError – If the target timestamp is negative

• UnsupportedVersionError – If the broker does not support looking up the offsets by
timestamp.

• KafkaTimeoutError – If fetch failed in request_timeout_ms

New in version 0.3.0.

partitions_for_topic(topic)
Get metadata about the partitions for a given topic.

This method will return None if Consumer does not already have metadata for this topic.

Parameters topic (str) – topic to check

Returns partition ids

Return type set

pause(*partitions)
Suspend fetching from the requested partitions.

Future calls to getmany() will not return any records from these partitions until they have been resumed
using resume().

Note: This method does not affect partition subscription. In particular, it does not cause a group rebalance
when automatic assignment is used.

34 Chapter 4. Authors and License

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set

aiokafka Documentation, Release 0.8.0

Parameters *partitions (list[TopicPartition]) – Partitions to pause.

paused()
Get the partitions that were previously paused using pause().

Returns partitions

Return type set[TopicPartition]

async position(partition)
Get the offset of the next record that will be fetched (if a record with that offset exists on broker).

Parameters partition (TopicPartition) – partition to check

Returns offset

Return type int

Raises IllegalStateError – partition is not assigned

Changed in version 0.4.0: Changed AssertionError to IllegalStateError in case of unassigned par-
tition

resume(*partitions)
Resume fetching from the specified (paused) partitions.

Parameters *partitions (list[TopicPartition]) – Partitions to resume.

seek(partition, offset)
Manually specify the fetch offset for a TopicPartition.

Overrides the fetch offsets that the consumer will use on the next getmany()/getone() call. If this API
is invoked for the same partition more than once, the latest offset will be used on the next fetch.

Note: You may lose data if this API is arbitrarily used in the middle of consumption to reset the fetch
offsets. Use it either on rebalance listeners or after all pending messages are processed.

Parameters

• partition (TopicPartition) – partition for seek operation

• offset (int) – message offset in partition

Raises

• ValueError – if offset is not a positive integer

• IllegalStateError – partition is not currently assigned

Changed in version 0.4.0: Changed AssertionError to IllegalStateError and ValueError in re-
spective cases.

async seek_to_beginning(*partitions)
Seek to the oldest available offset for partitions.

Parameters *partitions – Optionally provide specific TopicPartition, otherwise default
to all assigned partitions.

Raises

• IllegalStateError – If any partition is not currently assigned

• TypeError – If partitions are not instances of TopicPartition

4.4. API Documentation 35

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

aiokafka Documentation, Release 0.8.0

New in version 0.3.0.

async seek_to_committed(*partitions)
Seek to the committed offset for partitions.

Parameters *partitions – Optionally provide specific TopicPartition, otherwise default
to all assigned partitions.

Returns mapping of the currently committed offsets.

Return type dict(TopicPartition, int)

Raises

• IllegalStateError – If any partition is not currently assigned

• IllegalOperation – If used with group_id == None

Changed in version 0.3.0: Changed AssertionError to IllegalStateError in case of unassigned par-
tition

async seek_to_end(*partitions)
Seek to the most recent available offset for partitions.

Parameters *partitions – Optionally provide specific TopicPartition, otherwise default
to all assigned partitions.

Raises

• IllegalStateError – If any partition is not currently assigned

• TypeError – If partitions are not instances of TopicPartition

New in version 0.3.0.

async start()
Connect to Kafka cluster. This will:

• Load metadata for all cluster nodes and partition allocation

• Wait for possible topic autocreation

• Join group if group_id provided

async stop()
Close the consumer, while waiting for finalizers:

• Commit last consumed message if autocommit enabled

• Leave group if used Consumer Groups

subscribe(topics=(), pattern=None, listener=None)
Subscribe to a list of topics, or a topic regex pattern.

Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental:
this list will replace the current assignment (if there is one).

This method is incompatible with assign().

Parameters

• topics (list) – List of topics for subscription.

• pattern (str) – Pattern to match available topics. You must provide either topics or
pattern, but not both.

36 Chapter 4. Authors and License

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

aiokafka Documentation, Release 0.8.0

• listener (ConsumerRebalanceListener) – Optionally include listener callback, which
will be called before and after each rebalance operation. As part of group management, the
consumer will keep track of the list of consumers that belong to a particular group and will
trigger a rebalance operation if one of the following events trigger:

– Number of partitions change for any of the subscribed topics

– Topic is created or deleted

– An existing member of the consumer group dies

– A new member is added to the consumer group

When any of these events are triggered, the provided listener will be invoked first to indicate
that the consumer’s assignment has been revoked, and then again when the new assignment
has been received. Note that this listener will immediately override any listener set in a
previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned
through this interface are from topics subscribed in this call.

Raises

• IllegalStateError – if called after previously calling assign()

• ValueError – if neither topics or pattern is provided or both are provided

• TypeError – if listener is not a ConsumerRebalanceListener

subscription()
Get the current topics subscription.

Returns a set of topics

Return type frozenset(str)

async topics()
Get all topics the user is authorized to view.

Returns topics

Return type set

unsubscribe()
Unsubscribe from all topics and clear all assigned partitions.

4.4.3 Helpers

aiokafka.helpers.create_ssl_context(*, cafile=None, capath=None, cadata=None, certfile=None,
keyfile=None, password=None, crlfile=None)

Simple helper, that creates an SSLContext based on params similar to those in kafka-python, but with some
restrictions like:

• check_hostname is not optional, and will be set to True

• crlfile option is missing. It is fairly hard to test it.

Parameters

• cafile (str) – Certificate Authority file path containing certificates used to sign broker cer-
tificates. If CA not specified (by either cafile, capath, cadata) default system CA will be used
if found by OpenSSL. For more information see load_verify_locations(). Default:
None

4.4. API Documentation 37

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://github.com/dpkp/kafka-python
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_verify_locations
https://docs.python.org/3/library/constants.html#None

aiokafka Documentation, Release 0.8.0

• capath (str) – Same as cafile, but points to a directory containing several CA certificates.
For more information see load_verify_locations(). Default: None

• cadata (str, bytes) – Same as cafile, but instead contains already read data in either
ASCII or bytes format. Can be used to specify DER-encoded certificates, rather than PEM
ones. For more information see load_verify_locations(). Default: None

• certfile (str) – optional filename of file in PEM format containing the client certificate,
as well as any CA certificates needed to establish the certificate’s authenticity. For more
information see load_cert_chain(). Default: None.

• keyfile (str) – optional filename containing the client private key. For more information
see load_cert_chain(). Default: None.

• password (str) – optional password to be used when loading the certificate chain. For more
information see load_cert_chain(). Default: None.

4.4.4 Abstracts

class aiokafka.abc.AbstractTokenProvider(**config)
A Token Provider must be used for the SASL OAuthBearer protocol.

The implementation should ensure token reuse so that multiple calls at connect time do not create multiple tokens.
The implementation should also periodically refresh the token in order to guarantee that each call returns an
unexpired token.

A timeout error should be returned after a short period of inactivity so that the broker can log debugging info
and retry.

Token Providers MUST implement the token() method

abstract async token()
An async callback returning a str ID/Access Token to be sent to the Kafka client. In case where a syn-
choronous callback is needed, implementations like following can be used:

from aiokafka.abc import AbstractTokenProvider

class CustomTokenProvider(AbstractTokenProvider):
async def token(self):

return asyncio.get_running_loop().run_in_executor(
None, self._token)

def _token(self):
The actual synchoronous token callback.

extensions()
This is an OPTIONAL method that may be implemented.

Returns a map of key-value pairs that can be sent with the SASL/OAUTHBEARER initial client request.
If not implemented, the values are ignored

This feature is only available in Kafka >= 2.1.0.

class aiokafka.abc.ConsumerRebalanceListener
A callback interface that the user can implement to trigger custom actions when the set of partitions assigned to
the consumer changes.

This is applicable when the consumer is having Kafka auto-manage group membership. If the consumer’s directly
assign partitions, those partitions will never be reassigned and this callback is not applicable.

38 Chapter 4. Authors and License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_verify_locations
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_verify_locations
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain
https://docs.python.org/3/library/constants.html#None
https://docs.confluent.io/platform/current/kafka/authentication_sasl/authentication_sasl_oauth.html
https://docs.python.org/3/library/stdtypes.html#str

aiokafka Documentation, Release 0.8.0

When Kafka is managing the group membership, a partition re-assignment will be triggered any time the mem-
bers of the group changes or the subscription of the members changes. This can occur when processes die, new
process instances are added or old instances come back to life after failure. Rebalances can also be triggered by
changes affecting the subscribed topics (e.g. when then number of partitions is administratively adjusted).

There are many uses for this functionality. One common use is saving offsets in a custom store. By saving offsets
in the on_partitions_revoked(), call we can ensure that any time partition assignment changes the offset
gets saved.

Another use is flushing out any kind of cache of intermediate results the consumer may be keeping. For example,
consider a case where the consumer is subscribed to a topic containing user page views, and the goal is to count
the number of page views per users for each five minute window. Let’s say the topic is partitioned by the user id
so that all events for a particular user will go to a single consumer instance. The consumer can keep in memory
a running tally of actions per user and only flush these out to a remote data store when its cache gets too big.
However if a partition is reassigned it may want to automatically trigger a flush of this cache, before the new
owner takes over consumption.

This callback will execute during the rebalance process, and Consumer will wait for callbacks to finish before
proceeding with group join.

It is guaranteed that all consumer processes will invoke on_partitions_revoked() prior to any process in-
voking on_partitions_assigned(). So if offsets or other state is saved in the on_partitions_revoked()
call, it should be saved by the time the process taking over that partition has their on_partitions_assigned()
callback called to load the state.

abstract on_partitions_revoked(revoked)
A coroutine or function the user can implement to provide cleanup or custom state save on the start of a
rebalance operation.

This method will be called before a rebalance operation starts and after the consumer stops fetching data.

If you are using manual commit you have to commit all consumed offsets here, to avoid duplicate message
delivery after rebalance is finished.

Note: This method is only called before rebalances. It is not called prior to AIOKafkaConsumer.stop()

Parameters revoked (list(TopicPartition)) – the partitions that were assigned to the con-
sumer on the last rebalance

abstract on_partitions_assigned(assigned)
A coroutine or function the user can implement to provide load of custom consumer state or cache warmup
on completion of a successful partition re-assignment.

This method will be called after partition re-assignment completes and before the consumer starts fetching
data again.

It is guaranteed that all the processes in a consumer group will execute their on_partitions_revoked()
callback before any instance executes its on_partitions_assigned() callback.

Parameters assigned (list(TopicPartition)) – the partitions assigned to the consumer
(may include partitions that were previously assigned)

4.4. API Documentation 39

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

aiokafka Documentation, Release 0.8.0

4.4.5 SSL Authentication

Security is not an easy thing, at least when you want to do it right. Before diving in on how to setup aiokafka to work
with SSL, make sure there is a need for SSL Authentication and go through the official documentation for SSL support
in Kafka itself.

aiokafka provides only ssl_context as a parameter for Consumer and Producer classes. This is done inten-
tionally, as it is recommended that you read through the Python ssl documentation to have some understanding
on the topic. Although if you know what you are doing, there is a simple helper function aiokafka.helpers.
create_ssl_context(), that will create an ssl.SSLContext based on similar params to kafka-python.

A few notes on Kafka’s SSL store types. Java uses JKS store type, that contains normal certificates, same as ones
OpenSSL (and Python, as it’s based on OpenSSL) uses, but encodes them into a single, encrypted file, protected by
another password. Just look the internet on how to extract CARoot, Certificate and Key from JKS store.

See also the Using SSL with aiokafka example.

4.4.6 SASL Authentication

As of version 0.5.1 aiokafka supports SASL authentication using both PLAIN and GSSAPI SASL methods. Be sure to
install gssapi python module to use GSSAPI.

Please consult the official documentation for setup instructions on Broker side. Client configuration is pretty much the
same as Java’s, consult the sasl_* options in Consumer and Producer API Reference for more details.

4.4.7 Error handling

Both consumer and producer can raise exceptions that inherit from the aiokafka.errors.KafkaError class.

Exception handling example:

from aiokafka.errors import KafkaError, KafkaTimeoutError
...
try:

send_future = await producer.send('foobar', b'test data')
response = await send_future # wait until message is produced

except KafkaTimeoutError:
print("produce timeout... maybe we want to resend data again?")

except KafkaError as err:
print("some kafka error on produce: {}".format(err))

Consumer errors

Consumer’s async for and getone()/getmany() interfaces will handle those differently. Possible consumer errors
include:

• TopicAuthorizationFailedError - topic requires authorization. Always raised

• OffsetOutOfRangeError - if you don’t specify auto_offset_reset policy and started cosumption from not valid
offset. Always raised

• RecordTooLargeError - broker has a MessageSet larger than max_partition_fetch_bytes. async for - log error,
get* will raise it.

• InvalidMessageError - CRC check on MessageSet failed due to connection failure or bug. Always raised.
Changed in version 0.5.0, before we ignored this error in async for.

40 Chapter 4. Authors and License

http://kafka.apache.org/documentation.html#security_ssl
https://docs.python.org/3/library/ssl.html#security-considerations
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://github.com/dpkp/kafka-python
https://pypi.org/project/gssapi/
http://kafka.apache.org/documentation.html#security_sasl

aiokafka Documentation, Release 0.8.0

4.4.8 Other references

class aiokafka.producer.message_accumulator.BatchBuilder(magic, batch_size, compression_type, *,
is_transactional)

class aiokafka.consumer.group_coordinator.GroupCoordinator(client, subscription, *,
group_id='aiokafka-default-group',
session_timeout_ms=10000,
heartbeat_interval_ms=3000,
retry_backoff_ms=100,
enable_auto_commit=True,
auto_commit_interval_ms=5000,
assignors=(<class
'kafka.coordinator.assignors.roundrobin.RoundRobinPartitionAssignor'>,
), exclude_internal_topics=True,
max_poll_interval_ms=300000,
rebalance_timeout_ms=30000)

GroupCoordinator implements group management for single group member by interacting with a designated
Kafka broker (the coordinator). Group semantics are provided by extending this class.

From a high level, Kafka’s group management protocol consists of the following sequence of actions:

1. Group Registration: Group members register with the coordinator providing their own metadata (such as
the set of topics they are interested in).

2. Group/Leader Selection: The coordinator (one of Kafka nodes) select the members of the group and
chooses one member (one of client’s) as the leader.

3. State Assignment: The leader receives metadata for all members and assigns partitions to them.

4. Group Stabilization: Each member receives the state assigned by the leader and begins processing. Between
each phase coordinator awaits all clients to respond. If some do not respond in time - it will revoke their
membership

NOTE: Try to maintain same log messages and behaviour as Java and

kafka-python clients:

https://github.com/apache/kafka/blob/0.10.1.1/clients/src/main/java/ org/apache/kafka/clients/consumer/internals/AbstractCoordinator.java
https://github.com/apache/kafka/blob/0.10.1.1/clients/src/main/java/ org/apache/kafka/clients/consumer/internals/ConsumerCoordinator.java

class kafka.coordinator.assignors.roundrobin.RoundRobinPartitionAssignor
The roundrobin assignor lays out all the available partitions and all the available consumers. It then proceeds
to do a roundrobin assignment from partition to consumer. If the subscriptions of all consumer instances are
identical, then the partitions will be uniformly distributed. (i.e., the partition ownership counts will be within a
delta of exactly one across all consumers.)

For example, suppose there are two consumers C0 and C1, two topics t0 and t1, and each topic has 3 partitions,
resulting in partitions t0p0, t0p1, t0p2, t1p0, t1p1, and t1p2.

The assignment will be: C0: [t0p0, t0p2, t1p1] C1: [t0p1, t1p0, t1p2]

When subscriptions differ across consumer instances, the assignment process still considers each consumer in-
stance in round robin fashion but skips over an instance if it is not subscribed to the topic. Unlike the case when
subscriptions are identical, this can result in imbalanced assignments.

For example, suppose we have three consumers C0, C1, C2, and three topics t0, t1, t2, with unbalanced partitions
t0p0, t1p0, t1p1, t2p0, t2p1, t2p2, where C0 is subscribed to t0; C1 is subscribed to t0, t1; and C2 is subscribed
to t0, t1, t2.

4.4. API Documentation 41

https://github.com/apache/kafka/blob/0.10.1.1/clients/src/main/java/
https://github.com/apache/kafka/blob/0.10.1.1/clients/src/main/java/

aiokafka Documentation, Release 0.8.0

The assignment will be: C0: [t0p0] C1: [t1p0] C2: [t1p1, t2p0, t2p1, t2p2]

Errors

exception aiokafka.errors.ConcurrentTransactions

exception aiokafka.errors.ConsumerStoppedError
Raised on get* methods of Consumer if it’s cancelled, even pending ones.

exception aiokafka.errors.CoordinatorLoadInProgressError

exception aiokafka.errors.CoordinatorNotAvailableError

exception aiokafka.errors.DelegationTokenAuthDisabled

exception aiokafka.errors.DelegationTokenAuthorizationFailed

exception aiokafka.errors.DelegationTokenExpired

exception aiokafka.errors.DelegationTokenNotFound

exception aiokafka.errors.DelegationTokenOwnerMismatch

exception aiokafka.errors.DelegationTokenRequestNotAllowed

exception aiokafka.errors.DuplicateSequenceNumber

exception aiokafka.errors.FetchSessionIdNotFound

aiokafka.errors.GroupCoordinatorNotAvailableError
alias of aiokafka.errors.CoordinatorNotAvailableError

exception aiokafka.errors.GroupIdNotFound

aiokafka.errors.GroupLoadInProgressError
alias of aiokafka.errors.CoordinatorLoadInProgressError

exception aiokafka.errors.IllegalOperation
Raised if you try to execute an operation, that is not available with current configuration. For example trying to
commit if no group_id was given.

exception aiokafka.errors.InvalidFetchSessionEpoch

exception aiokafka.errors.InvalidPrincipalType

exception aiokafka.errors.InvalidProducerEpoch

exception aiokafka.errors.InvalidProducerIdMapping

exception aiokafka.errors.InvalidTransactionTimeout

exception aiokafka.errors.InvalidTxnState

exception aiokafka.errors.KafkaStorageError

exception aiokafka.errors.ListenerNotFound

exception aiokafka.errors.LogDirNotFound

exception aiokafka.errors.NoOffsetForPartitionError

exception aiokafka.errors.NonEmptyGroup

exception aiokafka.errors.NotCoordinatorError

aiokafka.errors.NotCoordinatorForGroupError
alias of aiokafka.errors.NotCoordinatorError

42 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

exception aiokafka.errors.OperationNotAttempted

exception aiokafka.errors.OutOfOrderSequenceNumber

exception aiokafka.errors.ProducerClosed

exception aiokafka.errors.ProducerFenced(msg='There is a newer producer using the same
transactional_id ortransaction timeout occurred (check that
processing time is below transaction_timeout_ms)')

Another producer with the same transactional ID went online. NOTE: As it seems this will be raised by Broker
if transaction timeout occurred also.

exception aiokafka.errors.ReassignmentInProgress

exception aiokafka.errors.RecordTooLargeError

exception aiokafka.errors.SaslAuthenticationFailed

exception aiokafka.errors.SecurityDisabled

exception aiokafka.errors.TransactionCoordinatorFenced

exception aiokafka.errors.TransactionalIdAuthorizationFailed

exception aiokafka.errors.UnknownProducerId

class aiokafka.errors.KafkaTimeoutError

class aiokafka.errors.RequestTimedOutError

class aiokafka.errors.NotEnoughReplicasError

class aiokafka.errors.NotEnoughReplicasAfterAppendError

class aiokafka.errors.KafkaError

class aiokafka.errors.UnsupportedVersionError

class aiokafka.errors.TopicAuthorizationFailedError

class aiokafka.errors.OffsetOutOfRangeError

class aiokafka.errors.CorruptRecordException

class kafka.errors.CorruptRecordException

aiokafka.errors.InvalidMessageError
alias of kafka.errors.CorruptRecordException

class aiokafka.errors.IllegalStateError

class aiokafka.errors.CommitFailedError(*args, **kwargs)

Structs

class kafka.structs.TopicPartition(topic, partition)
A Kafka broker metadata used by admin tools.

Keyword Arguments

• nodeID (int) – The Kafka broker id.

• host (str) – The Kafka broker hostname.

• port (int) – The Kafka broker port.

4.4. API Documentation 43

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

aiokafka Documentation, Release 0.8.0

• rack (str) – The rack of the broker, which is used to in rack aware partition assignment for
fault tolerance.

• Examples – RACK1, us-east-1d. Default: None

property partition
Alias for field number 1

property topic
Alias for field number 0

class aiokafka.structs.RecordMetadata(topic: str, partition: int, topic_partition:
kafka.structs.TopicPartition, offset: int, timestamp: Optional[int],
timestamp_type: int, log_start_offset: Optional[int])

Returned when a AIOKafkaProducer sends a message

property log_start_offset

property offset
The unique offset of the message in this partition.

See Offsets and Consumer Position for more details on offsets.

property partition
The partition number

property timestamp
Timestamp in millis, None for older Brokers

property timestamp_type
The timestamp type of this record.

If the broker respected the timestamp passed to AIOKafkaProducer.send(), 0 will be returned
(CreateTime).

If the broker set it’s own timestamp, 1 will be returned (LogAppendTime).

property topic
The topic name

property topic_partition

class aiokafka.structs.ConsumerRecord(*args, **kwds)

checksum: int
Deprecated

headers: Sequence[Tuple[str, bytes]]
The headers

key: Optional[aiokafka.structs.KT]
The key (or None if no key is specified)

offset: int
The position of this record in the corresponding Kafka partition.

partition: int
The partition from which this record is received

serialized_key_size: int
The size of the serialized, uncompressed key in bytes.

serialized_value_size: int
The size of the serialized, uncompressed value in bytes.

44 Chapter 4. Authors and License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

aiokafka Documentation, Release 0.8.0

timestamp: int
The timestamp of this record

timestamp_type: int
The timestamp type of this record

topic: str
The topic this record is received from

value: Optional[aiokafka.structs.VT]
The value

class aiokafka.structs.OffsetAndTimestamp(offset, timestamp)

property offset
Alias for field number 0

property timestamp
Alias for field number 1

class aiokafka.structs.KT
The type of a key.

class aiokafka.structs.VT
The type of a value.

Protocols

kafka.protocol.produce.ProduceRequest
alias of [<class ‘kafka.protocol.produce.ProduceRequest_v0’>, <class ‘kafka.protocol.produce.ProduceRequest_v1’>,
<class ‘kafka.protocol.produce.ProduceRequest_v2’>, <class ‘kafka.protocol.produce.ProduceRequest_v3’>,
<class ‘kafka.protocol.produce.ProduceRequest_v4’>, <class ‘kafka.protocol.produce.ProduceRequest_v5’>,
<class ‘kafka.protocol.produce.ProduceRequest_v6’>, <class ‘kafka.protocol.produce.ProduceRequest_v7’>,
<class ‘kafka.protocol.produce.ProduceRequest_v8’>]

4.5 Examples

4.5.1 Serialization and compression

Kafka supports several compression types: gzip, snappy and lz4. You only need to specify the compression in Kafka
Producer, Consumer will decompress automatically.

Note: Messages are compressed in batches, so you will have more efficiency on larger batches. You can consider
setting linger_ms to batch more data before sending.

By default value and key attributes of returned ConsumerRecord instances are bytes. You can use custom serial-
izer/deserializer hooks to operate on objects instead of bytes in those attributes.

Producer

import json
import asyncio
from aiokafka import AIOKafkaProducer

def serializer(value):
(continues on next page)

4.5. Examples 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

aiokafka Documentation, Release 0.8.0

(continued from previous page)

return json.dumps(value).encode()

async def produce():
producer = AIOKafkaProducer(

bootstrap_servers='localhost:9092',
value_serializer=serializer,
compression_type="gzip")

await producer.start()
data = {"a": 123.4, "b": "some string"}
await producer.send('foobar', data)
data = [1,2,3,4]
await producer.send('foobar', data)
await producer.stop()

asyncio.run(produce())

Consumer

import json
import asyncio
from kafka.common import KafkaError
from aiokafka import AIOKafkaConsumer

def deserializer(serialized):
return json.loads(serialized)

async def consume():
consumer will decompress messages automatically
in accordance to compression type specified in producer
consumer = AIOKafkaConsumer(

'foobar',
bootstrap_servers='localhost:9092',
value_deserializer=deserializer,
auto_offset_reset='earliest')

await consumer.start()
data = await consumer.getmany(timeout_ms=10000)
for tp, messages in data.items():

for message in messages:
print(type(message.value), message.value)

await consumer.stop()

asyncio.run(consume())

Output:

>>> python3 producer.py
>>> python3 consumer.py
<class 'dict'> {'a': 123.4, 'b': 'some string'}
<class 'list'> [1,2,3,4]

46 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

4.5.2 Manual commit

When processing more sensitive data enable_auto_commit=False mode of Consumer can lead to data loss in cases
of critical failure. To avoid it we can commit offsets manually after they were processed. Note, that this is a tradeoff
from at most once to at least once delivery, to achieve exactly once you will need to save offsets in the destination
database and validate those yourself.

More on message delivery: https://kafka.apache.org/documentation.html#semantics

Note: After Kafka Broker version 0.11 and after aiokafka==0.5.0 it is possible to use Transactional Producer to
achieve exactly once delivery semantics. See Transactional producer section.

Consumer:

import json
import asyncio
from kafka.common import KafkaError
from aiokafka import AIOKafkaConsumer

async def consume():
consumer = AIOKafkaConsumer(

'foobar',
bootstrap_servers='localhost:9092',
auto_offset_reset='earliest',
group_id="some-consumer-group",
enable_auto_commit=False)

await consumer.start()
we want to consume 10 messages from "foobar" topic
and commit after that
for _ in range(10):

msg = await consumer.getone()
await consumer.commit()

await consumer.stop()

asyncio.run(consume())

4.5.3 Group consumer

As of Kafka 9.0 Consumers can consume on the same topic simultaneously. This is achieved by coordinating consumers
by one of Kafka broker nodes (coordinator). This node will perform synchronization of partition assignment (thou the
partitions will be assigned by python code) and consumers will always return messages for the assigned partitions.

Note: Though Consumer will never return messages from not assigned partitions, if you are in autocommit=False
mode, you should re-check assignment before processing next message returned by getmany() call.

Producer:

import sys
import asyncio
from aiokafka import AIOKafkaProducer

async def produce(value, partition):
(continues on next page)

4.5. Examples 47

https://kafka.apache.org/documentation.html#semantics

aiokafka Documentation, Release 0.8.0

(continued from previous page)

producer = AIOKafkaProducer(bootstrap_servers='localhost:9092')

await producer.start()
await producer.send('some-topic', value, partition=partition)
await producer.stop()

if len(sys.argv) != 3:
print("usage: producer.py <partition> <message>")
sys.exit(1)

value = sys.argv[2].encode()
partition = int(sys.argv[1])

asyncio.run(produce(value, partition))

Consumer:

import sys
import asyncio
from aiokafka import AIOKafkaConsumer

async def consume():
consumer = AIOKafkaConsumer(

'some-topic',
group_id=group_id,
bootstrap_servers='localhost:9092',
auto_offset_reset='earliest')

await consumer.start()
for _ in range(msg_cnt):

msg = await consumer.getone()
print(f"Message from partition [{msg.partition}]: {msg.value}")

await consumer.stop()

if len(sys.argv) < 3:
print("usage: consumer.py <group_id> <wait messages count>")
sys.exit(1)

group_id = sys.argv[1]
msg_cnt = int(sys.argv[2])

asyncio.run(consume(group_id, msg_cnt))

Run example scripts:

• Creating topic some-topic with 2 partitions using standard Kafka utility:

bin/kafka-topics.sh --create \
--zookeeper localhost:2181 \
--replication-factor 1 \
--partitions 2 \
--topic some-topic

• terminal#1:

python3 consumer.py TEST_GROUP 2

48 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

• terminal#2:

python3 consumer.py TEST_GROUP 2

• terminal#3:

python3 consumer.py OTHER_GROUP 4

• terminal#4:

python3 producer.py 0 'message #1'
python3 producer.py 0 'message #2'
python3 producer.py 1 'message #3'
python3 producer.py 1 'message #4'

Output:

• terminal#1:

Message from partition [0]: b'message #1'

Message from partition [0]: b'message #2'

• terminal#2:

Message from partition [1]: b'message #3'

Message from partition [1]: b'message #4'

• terminal#3:

Message from partition [1]: b'message #3'

Message from partition [1]: b'message #4'

Message from partition [0]: b'message #1'

Message from partition [0]: b'message #2'

4.5.4 Custom partitioner

If you consider using partitions as a logical entity, rather then purely for load-balancing, you may need to have more
control over routing messages to partitions. By default hashing algorithms are used.

Producer

import asyncio
import random
from aiokafka import AIOKafkaProducer

def my_partitioner(key, all_partitions, available_partitions):
if key == b'first':

return all_partitions[0]
elif key == b'last':

(continues on next page)

4.5. Examples 49

aiokafka Documentation, Release 0.8.0

(continued from previous page)

return all_partitions[-1]
return random.choice(all_partitions)

async def produce_one(producer, key, value):
future = await producer.send('foobar', value, key=key)
resp = await future
print("'%s' produced in partition: %i"%(value.decode(), resp.partition))

async def produce_task():
producer = AIOKafkaProducer(

bootstrap_servers='localhost:9092',
partitioner=my_partitioner)

await producer.start()
await produce_one(producer, b'last', b'1')
await produce_one(producer, b'some', b'2')
await produce_one(producer, b'first', b'3')
await producer.stop()

asyncio.run(produce_task())

Output (topic foobar has 10 partitions):

>>> python3 producer.py
'1' produced in partition: 9
'2' produced in partition: 6
'3' produced in partition: 0

4.5.5 Using SSL with aiokafka

An example of SSL usage with aiokafka. Please read SSL Authentication for more information.

import asyncio
from aiokafka import AIOKafkaProducer, AIOKafkaConsumer
from aiokafka.helpers import create_ssl_context
from kafka.common import TopicPartition

context = create_ssl_context(
cafile="./ca-cert", # CA used to sign certificate.

`CARoot` of JKS store container
certfile="./cert-signed", # Signed certificate
keyfile="./cert-key", # Private Key file of `certfile` certificate
password="123123"

)

async def produce_and_consume():
Produce
producer = AIOKafkaProducer(

bootstrap_servers='localhost:9093',
security_protocol="SSL", ssl_context=context)

(continues on next page)

50 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

(continued from previous page)

await producer.start()
try:

msg = await producer.send_and_wait(
'my_topic', b"Super Message", partition=0)

finally:
await producer.stop()

consumer = AIOKafkaConsumer(
"my_topic", bootstrap_servers='localhost:9093',
security_protocol="SSL", ssl_context=context)

await consumer.start()
try:

consumer.seek(TopicPartition('my_topic', 0), msg.offset)
fetch_msg = await consumer.getone()

finally:
await consumer.stop()

print("Success", msg, fetch_msg)

if __name__ == "__main__":
asyncio.run(produce_and_consume())

Output:

>>> python3 ssl_consume_produce.py
Success RecordMetadata(topic='my_topic', partition=0, topic_
→˓partition=TopicPartition(topic='my_topic', partition=0), offset=32)␣
→˓ConsumerRecord(topic='my_topic', partition=0, offset=32, timestamp=1479393347381,␣
→˓timestamp_type=0, key=None, value=b'Super Message', checksum=469650252, serialized_key_
→˓size=-1, serialized_value_size=13)

4.5.6 Local state and storing offsets outside of Kafka

While the default for Kafka applications is storing commit points in Kafka’s internal storage, you can disable that and
use seek() to move to stored points. This makes sense if you want to store offsets in the same system as results of
computations (filesystem in example below). But that said, you will still probably want to use the coordinated consumer
groups feature.

This example shows extensive usage of ConsumerRebalanceListener to control what’s done before and after rebal-
ance’s.

Local State consumer:

import asyncio
from aiokafka import AIOKafkaConsumer, ConsumerRebalanceListener
from aiokafka.errors import OffsetOutOfRangeError

import json
import pathlib
from collections import Counter

(continues on next page)

4.5. Examples 51

aiokafka Documentation, Release 0.8.0

(continued from previous page)

FILE_NAME_TMPL = "/tmp/my-partition-state-{tp.topic}-{tp.partition}.json"

class RebalanceListener(ConsumerRebalanceListener):

def __init__(self, consumer, local_state):
self.consumer = consumer
self.local_state = local_state

async def on_partitions_revoked(self, revoked):
print("Revoked", revoked)
self.local_state.dump_local_state()

async def on_partitions_assigned(self, assigned):
print("Assigned", assigned)
self.local_state.load_local_state(assigned)
for tp in assigned:

last_offset = self.local_state.get_last_offset(tp)
if last_offset < 0:

await self.consumer.seek_to_beginning(tp)
else:

self.consumer.seek(tp, last_offset + 1)

class LocalState:

def __init__(self):
self._counts = {}
self._offsets = {}

def dump_local_state(self):
for tp in self._counts:

fpath = pathlib.Path(FILE_NAME_TMPL.format(tp=tp))
with fpath.open("w+") as f:

json.dump({
"last_offset": self._offsets[tp],
"counts": dict(self._counts[tp])

}, f)

def load_local_state(self, partitions):
self._counts.clear()
self._offsets.clear()
for tp in partitions:

fpath = pathlib.Path(FILE_NAME_TMPL.format(tp=tp))
state = {

"last_offset": -1, # Non existing, will reset
"counts": {}

}
if fpath.exists():

with fpath.open("r+") as f:
try:

state = json.load(f)

(continues on next page)

52 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

(continued from previous page)

except json.JSONDecodeError:
pass

self._counts[tp] = Counter(state['counts'])
self._offsets[tp] = state['last_offset']

def add_counts(self, tp, counts, last_offset):
self._counts[tp] += counts
self._offsets[tp] = last_offset

def get_last_offset(self, tp):
return self._offsets[tp]

def discard_state(self, tps):
for tp in tps:

self._offsets[tp] = -1
self._counts[tp] = Counter()

async def save_state_every_second(local_state):
while True:

try:
await asyncio.sleep(1)

except asyncio.CancelledError:
break

local_state.dump_local_state()

async def consume():
consumer = AIOKafkaConsumer(

bootstrap_servers='localhost:9092',
group_id="my_group", # Consumer must be in a group to commit
enable_auto_commit=False, # Will disable autocommit
auto_offset_reset="none",
key_deserializer=lambda key: key.decode("utf-8") if key else "",

)
await consumer.start()

local_state = LocalState()
listener = RebalanceListener(consumer, local_state)
consumer.subscribe(topics=["test"], listener=listener)

save_task = asyncio.create_task(save_state_every_second(local_state))

try:

while True:
try:

msg_set = await consumer.getmany(timeout_ms=1000)
except OffsetOutOfRangeError as err:

This means that saved file is outdated and should be
discarded
tps = err.args[0].keys()

(continues on next page)

4.5. Examples 53

aiokafka Documentation, Release 0.8.0

(continued from previous page)

local_state.discard_state(tps)
await consumer.seek_to_beginning(*tps)
continue

for tp, msgs in msg_set.items():
counts = Counter()
for msg in msgs:

print("Process", tp, msg.key)
counts[msg.key] += 1

local_state.add_counts(tp, counts, msg.offset)

finally:
await consumer.stop()
save_task.cancel()
await save_task

if __name__ == "__main__":
asyncio.run(consume())

There are several points of interest in this example:

• We implement RebalanceListener to dump all counts and offsets before rebalances. After rebalances we load
them from the same files. It’s a kind of cache to avoid re-reading all messages.

• We control offset reset policy manually by setting auto_offset_reset="none". We need it to catch
OffsetOutOfRangeError so we can clear cache if files were old and such offsets don’t exist anymore in Kafka.

• As we count keys here, those will always be partitioned to the same partition on produce. We will not have
duplicate counts in different files.

Output for 1st consumer:

>>> python examples/local_state_consumer.py
Revoked set()
Assigned {TopicPartition(topic='test', partition=0), TopicPartition(topic='test',␣
→˓partition=1), TopicPartition(topic='test', partition=2)}
Heartbeat failed for group my_group because it is rebalancing
Revoked {TopicPartition(topic='test', partition=0), TopicPartition(topic='test',␣
→˓partition=1), TopicPartition(topic='test', partition=2)}
Assigned {TopicPartition(topic='test', partition=0), TopicPartition(topic='test',␣
→˓partition=2)}
Process TopicPartition(topic='test', partition=2) 123
Process TopicPartition(topic='test', partition=2) 9999
Process TopicPartition(topic='test', partition=2) 1111
Process TopicPartition(topic='test', partition=0) 4444
Process TopicPartition(topic='test', partition=0) 123123
Process TopicPartition(topic='test', partition=0) 5555
Process TopicPartition(topic='test', partition=2) 88891823
Process TopicPartition(topic='test', partition=2) 2

Output for 2nd consumer:

54 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

>>> python examples/local_state_consumer.py
Revoked set()
Assigned {TopicPartition(topic='test', partition=1)}
Process TopicPartition(topic='test', partition=1) 321
Process TopicPartition(topic='test', partition=1) 777

Those create such files as a result:

>>> cat /tmp/my-partition-state-test-0.json && echo
{"last_offset": 4, "counts": {"123123": 1, "4444": 1, "321": 2, "5555": 1}}

4.5.7 Batch producer

If your application needs precise control over batch creation and submission and you’re willing to forego the niceties of
automatic serialization and partition selection, you may use the simple create_batch() and send_batch() interface.

Producer

import asyncio
import random
from aiokafka.producer import AIOKafkaProducer

async def send_many(num):
topic = "my_topic"
producer = AIOKafkaProducer()
await producer.start()

batch = producer.create_batch()

i = 0
while i < num:

msg = ("Test message %d" % i).encode("utf-8")
metadata = batch.append(key=None, value=msg, timestamp=None)
if metadata is None:

partitions = await producer.partitions_for(topic)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, topic, partition=partition)
print("%d messages sent to partition %d"

% (batch.record_count(), partition))
batch = producer.create_batch()
continue

i += 1
partitions = await producer.partitions_for(topic)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, topic, partition=partition)
print("%d messages sent to partition %d"

% (batch.record_count(), partition))
await producer.stop()

asyncio.run(send_many(1000))

Output (topic my_topic has 3 partitions):

4.5. Examples 55

aiokafka Documentation, Release 0.8.0

>>> python3 batch_produce.py
329 messages sent to partition 2
327 messages sent to partition 0
327 messages sent to partition 0
17 messages sent to partition 1

4.5.8 Transactional Consume-Process-Produce

If you have a pattern where you want to consume from one topic, process data and produce to a different one, you would
really like to do it with using Transactional Producer. In the example below we read from IN_TOPIC, process data and
produce the resut to OUT_TOPIC in a transactional manner.

import asyncio
from collections import defaultdict, Counter

from aiokafka import TopicPartition, AIOKafkaConsumer, AIOKafkaProducer

IN_TOPIC = "in_topic"
GROUP_ID = "processing-group"
OUT_TOPIC = "out_topic"
TRANSACTIONAL_ID = "my-txn-id"
BOOTSTRAP_SERVERS = "localhost:9092"

POLL_TIMEOUT = 60_000

def process_batch(msgs):
Group by key do simple count sampling by a minute window
buckets_by_key = defaultdict(Counter)
for msg in msgs:

timestamp = (msg.timestamp // 60_000) * 60
buckets_by_key[msg.key][timestamp] += 1

res = []
for key, counts in buckets_by_key.items():

for timestamp, count in counts.items():
value = str(count).encode()
res.append((key, value, timestamp))

return res

async def transactional_process():
consumer = AIOKafkaConsumer(

IN_TOPIC,
bootstrap_servers=BOOTSTRAP_SERVERS,
enable_auto_commit=False,
group_id=GROUP_ID,
isolation_level="read_committed" # <-- This will filter aborted txn's

)
(continues on next page)

56 Chapter 4. Authors and License

aiokafka Documentation, Release 0.8.0

(continued from previous page)

await consumer.start()

producer = AIOKafkaProducer(
bootstrap_servers=BOOTSTRAP_SERVERS,
transactional_id=TRANSACTIONAL_ID

)
await producer.start()

try:
while True:

msg_batch = await consumer.getmany(timeout_ms=POLL_TIMEOUT)

async with producer.transaction():
commit_offsets = {}
in_msgs = []
for tp, msgs in msg_batch.items():

in_msgs.extend(msgs)
commit_offsets[tp] = msgs[-1].offset + 1

out_msgs = process_batch(in_msgs)
for key, value, timestamp in out_msgs:

await producer.send(
OUT_TOPIC, value=value, key=key,
timestamp_ms=int(timestamp * 1000)

)
We commit through the producer because we want the commit
to only succeed if the whole transaction is done
successfully.
await producer.send_offsets_to_transaction(

commit_offsets, GROUP_ID)
finally:

await consumer.stop()
await producer.stop()

if __name__ == "__main__":
asyncio.run(transactional_process())

4.5. Examples 57

aiokafka Documentation, Release 0.8.0

58 Chapter 4. Authors and License

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

59

aiokafka Documentation, Release 0.8.0

60 Chapter 5. Indices and tables

PYTHON MODULE INDEX

a
aiokafka.errors, 42
aiokafka.helpers, 37
aiokafka.structs, 43

k
kafka.oauth.abstract, 40

61

aiokafka Documentation, Release 0.8.0

62 Python Module Index

INDEX

A
AbstractTokenProvider (class in aiokafka.abc), 38
aiokafka.errors

module, 42
aiokafka.helpers

module, 37
aiokafka.structs

module, 43
AIOKafkaConsumer (class in aiokafka), 27
AIOKafkaProducer (class in aiokafka), 23
assign() (aiokafka.AIOKafkaConsumer method), 30
assignment() (aiokafka.AIOKafkaConsumer method),

30

B
BatchBuilder (class in

aiokafka.producer.message_accumulator),
41

beginning_offsets() (aiokafka.AIOKafkaConsumer
method), 30

C
checksum (aiokafka.structs.ConsumerRecord attribute),

44
commit() (aiokafka.AIOKafkaConsumer method), 31
CommitFailedError (class in aiokafka.errors), 43
committed() (aiokafka.AIOKafkaConsumer method),

31
ConcurrentTransactions, 42
ConsumerRebalanceListener (class in aiokafka.abc),

38
ConsumerRecord (class in aiokafka.structs), 44
ConsumerStoppedError, 42
CoordinatorLoadInProgressError, 42
CoordinatorNotAvailableError, 42
CorruptRecordException (class in aiokafka.errors),

43
CorruptRecordException (class in kafka.errors), 43
create_batch() (aiokafka.AIOKafkaProducer

method), 25
create_ssl_context() (in module aiokafka.helpers),

37

D
DelegationTokenAuthDisabled, 42
DelegationTokenAuthorizationFailed, 42
DelegationTokenExpired, 42
DelegationTokenNotFound, 42
DelegationTokenOwnerMismatch, 42
DelegationTokenRequestNotAllowed, 42
DuplicateSequenceNumber, 42

E
end_offsets() (aiokafka.AIOKafkaConsumer method),

32
extensions() (aiokafka.abc.AbstractTokenProvider

method), 38

F
FetchSessionIdNotFound, 42
flush() (aiokafka.AIOKafkaProducer method), 25

G
getmany() (aiokafka.AIOKafkaConsumer method), 32
getone() (aiokafka.AIOKafkaConsumer method), 33
GroupCoordinator (class in

aiokafka.consumer.group_coordinator), 41
GroupCoordinatorNotAvailableError (in module

aiokafka.errors), 42
GroupIdNotFound, 42
GroupLoadInProgressError (in module

aiokafka.errors), 42

H
headers (aiokafka.structs.ConsumerRecord attribute),

44
highwater() (aiokafka.AIOKafkaConsumer method),

33

I
IllegalOperation, 42
IllegalStateError (class in aiokafka.errors), 43
InvalidFetchSessionEpoch, 42
InvalidMessageError (in module aiokafka.errors), 43

63

aiokafka Documentation, Release 0.8.0

InvalidPrincipalType, 42
InvalidProducerEpoch, 42
InvalidProducerIdMapping, 42
InvalidTransactionTimeout, 42
InvalidTxnState, 42

K
kafka.oauth.abstract

module, 40
KafkaError (class in aiokafka.errors), 43
KafkaStorageError, 42
KafkaTimeoutError (class in aiokafka.errors), 43
key (aiokafka.structs.ConsumerRecord attribute), 44
KT (class in aiokafka.structs), 45

L
last_poll_timestamp()

(aiokafka.AIOKafkaConsumer method),
33

last_stable_offset() (aiokafka.AIOKafkaConsumer
method), 33

ListenerNotFound, 42
log_start_offset (aiokafka.structs.RecordMetadata

property), 44
LogDirNotFound, 42

M
module

aiokafka.errors, 42
aiokafka.helpers, 37
aiokafka.structs, 43
kafka.oauth.abstract, 40

N
NonEmptyGroup, 42
NoOffsetForPartitionError, 42
NotCoordinatorError, 42
NotCoordinatorForGroupError (in module

aiokafka.errors), 42
NotEnoughReplicasAfterAppendError (class in

aiokafka.errors), 43
NotEnoughReplicasError (class in aiokafka.errors),

43

O
offset (aiokafka.structs.ConsumerRecord attribute), 44
offset (aiokafka.structs.OffsetAndTimestamp property),

45
offset (aiokafka.structs.RecordMetadata property), 44
OffsetAndTimestamp (class in aiokafka.structs), 45
OffsetOutOfRangeError (class in aiokafka.errors), 43
offsets_for_times() (aiokafka.AIOKafkaConsumer

method), 34

on_partitions_assigned()
(aiokafka.abc.ConsumerRebalanceListener
method), 39

on_partitions_revoked()
(aiokafka.abc.ConsumerRebalanceListener
method), 39

OperationNotAttempted, 42
OutOfOrderSequenceNumber, 43

P
partition (aiokafka.structs.ConsumerRecord at-

tribute), 44
partition (aiokafka.structs.RecordMetadata property),

44
partition (kafka.structs.TopicPartition property), 44
partitions_for() (aiokafka.AIOKafkaProducer

method), 25
partitions_for_topic()

(aiokafka.AIOKafkaConsumer method),
34

pause() (aiokafka.AIOKafkaConsumer method), 34
paused() (aiokafka.AIOKafkaConsumer method), 35
position() (aiokafka.AIOKafkaConsumer method), 35
ProducerClosed, 43
ProduceRequest (in module kafka.protocol.produce), 45
ProducerFenced, 43

R
ReassignmentInProgress, 43
RecordMetadata (class in aiokafka.structs), 44
RecordTooLargeError, 43
RequestTimedOutError (class in aiokafka.errors), 43
resume() (aiokafka.AIOKafkaConsumer method), 35
RoundRobinPartitionAssignor (class in

kafka.coordinator.assignors.roundrobin),
41

S
SaslAuthenticationFailed, 43
SecurityDisabled, 43
seek() (aiokafka.AIOKafkaConsumer method), 35
seek_to_beginning() (aiokafka.AIOKafkaConsumer

method), 35
seek_to_committed() (aiokafka.AIOKafkaConsumer

method), 36
seek_to_end() (aiokafka.AIOKafkaConsumer method),

36
send() (aiokafka.AIOKafkaProducer method), 25
send_and_wait() (aiokafka.AIOKafkaProducer

method), 26
send_batch() (aiokafka.AIOKafkaProducer method),

26

64 Index

aiokafka Documentation, Release 0.8.0

serialized_key_size
(aiokafka.structs.ConsumerRecord attribute),
44

serialized_value_size
(aiokafka.structs.ConsumerRecord attribute),
44

start() (aiokafka.AIOKafkaConsumer method), 36
start() (aiokafka.AIOKafkaProducer method), 26
stop() (aiokafka.AIOKafkaConsumer method), 36
stop() (aiokafka.AIOKafkaProducer method), 26
subscribe() (aiokafka.AIOKafkaConsumer method),

36
subscription() (aiokafka.AIOKafkaConsumer

method), 37

T
timestamp (aiokafka.structs.ConsumerRecord at-

tribute), 44
timestamp (aiokafka.structs.OffsetAndTimestamp prop-

erty), 45
timestamp (aiokafka.structs.RecordMetadata property),

44
timestamp_type (aiokafka.structs.ConsumerRecord at-

tribute), 45
timestamp_type (aiokafka.structs.RecordMetadata

property), 44
token() (aiokafka.abc.AbstractTokenProvider method),

38
topic (aiokafka.structs.ConsumerRecord attribute), 45
topic (aiokafka.structs.RecordMetadata property), 44
topic (kafka.structs.TopicPartition property), 44
topic_partition (aiokafka.structs.RecordMetadata

property), 44
TopicAuthorizationFailedError (class in

aiokafka.errors), 43
TopicPartition (class in kafka.structs), 43
topics() (aiokafka.AIOKafkaConsumer method), 37
transaction() (aiokafka.AIOKafkaProducer method),

26
TransactionalIdAuthorizationFailed, 43
TransactionCoordinatorFenced, 43

U
UnknownProducerId, 43
unsubscribe() (aiokafka.AIOKafkaConsumer method),

37
UnsupportedVersionError (class in aiokafka.errors),

43

V
value (aiokafka.structs.ConsumerRecord attribute), 45
VT (class in aiokafka.structs), 45

Index 65

	Getting started
	AIOKafkaConsumer
	AIOKafkaProducer

	Installation
	Optional LZ4 install
	Optional Snappy install
	Optional zstd indtall
	Optional GSSAPI install

	Source code
	Authors and License
	Producer client
	Message buffering
	Retries and Message acknowledgement
	Idempotent produce
	Transactional producer
	Returned RecordMetadata object
	Direct batch control

	Consumer client
	Offsets and Consumer Position
	Manual vs automatic committing
	Controlling The Consumer’s Position
	Storing Offsets Outside Kafka

	Consumer Groups and Topic Subscriptions
	Topic subscription by pattern
	Manual partition assignment
	Consumption Flow Control
	Reading Transactional Messages

	Detecting Consumer Failures

	Difference between aiokafka and kafka-python
	Why do we need another library?
	API differences and rationale
	Consumer has no poll() method
	Rebalances are happening in the background
	Prefetching is more sophisticated

	API Documentation
	Producer class
	Consumer class
	Helpers
	Abstracts
	SSL Authentication
	SASL Authentication
	Error handling
	Consumer errors

	Other references
	Errors
	Structs
	Protocols

	Examples
	Serialization and compression
	Manual commit
	Group consumer
	Custom partitioner
	Using SSL with aiokafka
	Local state and storing offsets outside of Kafka
	Batch producer
	Transactional Consume-Process-Produce

	Indices and tables
	Python Module Index
	Index

